source: trunk/source/processes/hadronic/models/abla/src/G4AblaEvaporation.cc @ 1350

Last change on this file since 1350 was 1350, checked in by garnier, 13 years ago

update to last version 4.9.4

File size: 12.1 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer                                           *
4// *                                                                  *
5// * The  Geant4 software  is  copyright of the Copyright Holders  of *
6// * the Geant4 Collaboration.  It is provided  under  the terms  and *
7// * conditions of the Geant4 Software License,  included in the file *
8// * LICENSE and available at  http://cern.ch/geant4/license .  These *
9// * include a list of copyright holders.                             *
10// *                                                                  *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work  make  any representation or  warranty, express or implied, *
14// * regarding  this  software system or assume any liability for its *
15// * use.  Please see the license in the file  LICENSE  and URL above *
16// * for the full disclaimer and the limitation of liability.         *
17// *                                                                  *
18// * This  code  implementation is the result of  the  scientific and *
19// * technical work of the GEANT4 collaboration.                      *
20// * By using,  copying,  modifying or  distributing the software (or *
21// * any work based  on the software)  you  agree  to acknowledge its *
22// * use  in  resulting  scientific  publications,  and indicate your *
23// * acceptance of all terms of the Geant4 Software license.          *
24// ********************************************************************
25//
26// $Id: G4AblaEvaporation.cc,v 1.1 2008/02/27 18:31:11 miheikki Exp $
27//
28#include <numeric>
29// #include "G4IonTable.hh"
30// #include "globals.hh"
31// #include "G4V3DNucleus.hh"
32// #include "G4DynamicParticleVector.hh"
33// #include "G4EvaporationInuclCollider.hh"
34// #include "G4InuclEvaporation.hh"
35// #include "G4InuclNuclei.hh"
36// #include "G4Track.hh"
37// #include "G4Nucleus.hh"
38// #include "G4Nucleon.hh"
39// #include "G4NucleiModel.hh"
40#include "G4HadronicException.hh"
41// #include "G4LorentzVector.hh"
42// #include "G4EquilibriumEvaporator.hh"
43// #include "G4Fissioner.hh"
44// #include "G4BigBanger.hh"
45// #include "G4InuclElementaryParticle.hh"
46// #include "G4InuclParticle.hh"
47// #include "G4CollisionOutput.hh"
48
49#include "G4AblaEvaporation.hh"
50
51#include "G4PionPlus.hh"
52#include "G4PionMinus.hh"
53#include "G4PionZero.hh"
54
55G4AblaEvaporation::G4AblaEvaporation() {
56  verboseLevel=0;
57 hazard = new G4Hazard();
58  // set initial values:
59  // First random seed:
60  // (Premiere graine)
61  //  hazard->ial = 38035;
62  hazard->ial = 979678188;
63  // other seeds:
64  hazard->igraine[0] = 3997;
65  hazard->igraine[1] = 15573;
66  hazard->igraine[2] = 9971;
67  hazard->igraine[3] = 9821; 
68  hazard->igraine[4] = 99233; 
69  hazard->igraine[5] = 11167; 
70  hazard->igraine[6] = 12399;
71  hazard->igraine[7] = 11321; 
72  hazard->igraine[8] = 9825;
73  hazard->igraine[9] = 2587; 
74  hazard->igraine[10] = 1775;
75  hazard->igraine[11] = 56799; 
76  hazard->igraine[12] = 1156;
77  //  hazard->igraine[13] = 11207;
78  hazard->igraine[13] = 38957; 
79  hazard->igraine[14] = 35779; 
80  hazard->igraine[15] = 10055; 
81  hazard->igraine[16] = 76533; 
82  hazard->igraine[17] = 33759;
83  hazard->igraine[18] = 13227;
84}
85
86G4AblaEvaporation::G4AblaEvaporation(const G4AblaEvaporation &) : G4VEvaporation() {
87  throw G4HadronicException(__FILE__, __LINE__, "G4AblaEvaporation::copy_constructor meant to not be accessable.");
88}
89
90G4AblaEvaporation::~G4AblaEvaporation() {
91}
92
93const G4AblaEvaporation & G4AblaEvaporation::operator=(const G4AblaEvaporation &) {
94  throw G4HadronicException(__FILE__, __LINE__, "G4AblaEvaporation::operator= meant to not be accessable.");
95  return *this;
96}
97
98G4bool G4AblaEvaporation::operator==(const G4AblaEvaporation &) const {
99  return false;
100}
101
102G4bool G4AblaEvaporation::operator!=(const G4AblaEvaporation &) const {
103  return true;
104}
105
106void G4AblaEvaporation::setVerboseLevel( const G4int verbose ) {
107  verboseLevel = verbose;
108}
109
110G4FragmentVector * G4AblaEvaporation::BreakItUp(const G4Fragment &theNucleus) {
111 
112
113  G4VarNtp *varntp = new G4VarNtp();
114  G4Volant *volant = new G4Volant();
115
116  G4Abla *abla = new G4Abla(hazard, volant, varntp);
117  G4cout <<"Initializing evaporation..." << G4endl;
118  abla->initEvapora();
119  G4cout <<"Initialization complete!" << G4endl;
120 
121  G4double nucleusA = theNucleus.GetA();
122  G4double nucleusZ = theNucleus.GetZ();
123  G4double nucleusMass = G4NucleiProperties::GetAtomicMass(nucleusA, nucleusZ);
124  G4double excitationEnergy = theNucleus.GetExcitationEnergy();
125  G4double angularMomentum = 0.0; // Don't know how to get this quantity... From Geant4???
126
127  G4LorentzVector tmp = theNucleus.GetMomentum();
128
129  G4ThreeVector momentum = tmp.vect();
130
131  G4double recoilEnergy = tmp.e();
132  G4double momX = momentum.x();
133  G4double momY = momentum.y();
134  G4double momZ = momentum.z();
135  //  G4double energy = tmp.e();
136  G4double exitationE = theNucleus.GetExcitationEnergy() * MeV;
137
138  varntp->ntrack = -1;
139  varntp->massini = theNucleus.GetA();
140  varntp->mzini = theNucleus.GetZ();
141
142  std::vector<G4DynamicParticle*> cascadeParticles;
143  G4FragmentVector * theResult = new G4FragmentVector;
144  if (theNucleus.GetExcitationEnergy() <= 0.0) { // Check that Excitation Energy > 0
145    theResult->push_back(new G4Fragment(theNucleus));
146    return theResult;
147  }
148
149  //  G4double mTar  = G4NucleiProperties::GetAtomicMass(A, Z); // Mass of the target nucleus
150  varntp->exini = exitationE;
151
152  G4int particleI, n = 0;
153
154  // Print diagnostic messages. 0 = silent, 1 and 2 = verbose
155  //  verboseLevel = 3;
156
157  // Increase the event number:
158  eventNumber++;
159
160  G4DynamicParticle *cascadeParticle = 0;
161  //  G4ParticleDefinition *aParticleDefinition = 0;
162
163  // Map Geant4 particle types to corresponding INCL4 types.
164  enum bulletParticleType {nucleus = 0, proton = 1, neutron = 2, pionPlus = 3, pionZero = 4, 
165                           pionMinus = 5, deuteron = 6, triton = 7, he3 = 8, he4 = 9};
166
167  // Check wheter the input is acceptable. This will contain more tests in the future.
168
169//   void breakItUp(G4double nucleusA, G4double nucleusZ, G4double nucleusMass, G4double excitationEnergy,
170//                     G4double angularMomentum, G4double recoilEnergy, G4double momX, G4double momY, G4double momZ)
171  G4cout <<"Calling the actual ABLA model..." << G4endl;
172  G4cout <<"Excitation energy: " << excitationEnergy << G4endl;
173  abla->breakItUp(nucleusA, nucleusZ, nucleusMass, excitationEnergy, angularMomentum, recoilEnergy, momX, momY, momZ,
174                  eventNumber);
175  G4cout <<"Done." << G4endl;
176
177  if(verboseLevel > 0) {
178    // Diagnostic output
179    G4cout <<"G4AblaEvaporation: Target A:  " << nucleusA << G4endl;
180    G4cout <<"G4AblaEvaporation: Target Z:  " << nucleusZ << G4endl;
181
182    for(particleI = 0; particleI < varntp->ntrack; particleI++) {
183      G4cout << n << " ";
184      G4cout << varntp->massini << " " << varntp->mzini << " ";
185      G4cout << varntp->exini << " " << varntp->mulncasc << " " << varntp->mulnevap << " " << varntp->mulntot << " ";
186      G4cout << varntp->bimpact << " " << varntp->jremn << " " << varntp->kfis << " " << varntp->estfis << " ";
187      G4cout << varntp->izfis << " " << varntp->iafis << " " << varntp->ntrack << " " << varntp->itypcasc[particleI] << " ";
188      G4cout << varntp->avv[particleI] << " " << varntp->zvv[particleI] << " " << varntp->enerj[particleI] << " ";
189      G4cout << varntp->plab[particleI] << " " << varntp->tetlab[particleI] << " " << varntp->philab[particleI] << G4endl;
190    }
191  }
192
193  // Loop through the INCL4+ABLA output.
194  G4double momx, momy, momz; // Momentum components of the outcoming particles.
195  G4double eKin;
196  G4cout <<"varntp->ntrack = " << varntp->ntrack << G4endl;
197  for(particleI = 0; particleI < varntp->ntrack; particleI++) {
198    // Get energy/momentum and construct momentum vector:
199    // In INCL4 coordinates!
200    momx = varntp->plab[particleI]*std::cos(varntp->tetlab[particleI]*CLHEP::pi/180.0)*std::sin(varntp->philab[particleI]*CLHEP::pi/180.0)*MeV;
201    momy = varntp->plab[particleI]*std::sin(varntp->tetlab[particleI]*CLHEP::pi/180.0)*std::sin(varntp->philab[particleI]*CLHEP::pi/180.0)*MeV;
202    momz = varntp->plab[particleI]*std::cos(varntp->tetlab[particleI]*CLHEP::pi/180.0)*MeV;
203
204    eKin = varntp->enerj[particleI] * MeV;
205
206    if(verboseLevel > 1) {
207      //      G4cout <<"Momentum direction: (x ,y,z)";
208      //      G4cout << "(" << momx <<"," << momy << "," << momz << ")" << G4endl;
209    }
210
211    // This vector tells the direction of the particle.
212    G4ThreeVector momDirection(momx, momy, momz);
213    momDirection = momDirection.unit();
214       
215    // Identify the particle/nucleus:
216    G4int particleIdentified = 0;
217
218    // Proton
219    if((varntp->avv[particleI] == 1) && (varntp->zvv[particleI] == 1)) {
220      cascadeParticle = 
221        new G4DynamicParticle(G4Proton::ProtonDefinition(), momDirection, eKin);
222      particleIdentified++;
223    }
224
225    // Neutron
226    if((varntp->avv[particleI] == 1) && (varntp->zvv[particleI] == 0)) {
227      cascadeParticle = 
228        new G4DynamicParticle(G4Neutron::NeutronDefinition(), momDirection, eKin);
229      particleIdentified++;
230    }
231
232    // PionPlus
233    if((varntp->avv[particleI] == -1) && (varntp->zvv[particleI] == 1)) {
234      cascadeParticle = 
235        new G4DynamicParticle(G4PionPlus::PionPlusDefinition(), momDirection, eKin);
236      particleIdentified++;
237    }
238
239    // PionZero
240    if((varntp->avv[particleI] == -1) && (varntp->zvv[particleI] == 0)) {
241      cascadeParticle = 
242        new G4DynamicParticle(G4PionZero::PionZeroDefinition(), momDirection, eKin);
243      particleIdentified++;
244    }
245
246    // PionMinus
247    if((varntp->avv[particleI] == -1) && (varntp->zvv[particleI] == -1)) {
248      cascadeParticle = 
249        new G4DynamicParticle(G4PionMinus::PionMinusDefinition(), momDirection, eKin);
250      particleIdentified++;
251    }
252
253    // Nuclei fragment
254    if((varntp->avv[particleI] > 1) && (varntp->zvv[particleI] >= 1)) {
255      G4ParticleDefinition * aIonDef = 0;
256      G4ParticleTable *theTableOfParticles = G4ParticleTable::GetParticleTable();
257
258      G4int A = G4int(varntp->avv[particleI]);
259      G4int Z = G4int(varntp->zvv[particleI]);
260      aIonDef = theTableOfParticles->FindIon(Z, A, 0, Z);
261       
262      cascadeParticle = 
263        new G4DynamicParticle(aIonDef, momDirection, eKin);
264      particleIdentified++;
265    }
266
267    // Check that the particle was identified properly.
268    if(particleIdentified == 1) {
269      // Put data into G4HadFinalState:
270      cascadeParticle->Set4Momentum(cascadeParticle->Get4Momentum());
271      cascadeParticles.push_back(cascadeParticle);
272      //      theResult.AddSecondary(cascadeParticle);
273    }
274    // Particle identification failed. Checking why...
275    else {
276      // Particle was identified as more than one particle type.
277      if(particleIdentified > 1) {
278        G4cout <<"G4InclCascadeInterface: One outcoming particle was identified as";
279        G4cout <<"more than one particle type. This is probably due to a bug in the interface." << G4endl;
280        G4cout <<"Particle A:" << varntp->avv[particleI] << "Z: " << varntp->zvv[particleI] << G4endl;
281        G4cout << "(particleIdentified =" << particleIdentified << ")"  << G4endl;
282      }
283    }
284  }
285
286  // End of conversion
287
288  // Clean up: Clean up the number of generated particles in the
289  // common block VARNTP_ for the processing of the next event.
290  varntp->ntrack = 0;
291  // End of cleanup.
292
293// Free allocated memory
294  delete varntp;
295  delete abla;
296 
297  fillResult(cascadeParticles, theResult);
298  return theResult;
299}
300
301void G4AblaEvaporation::fillResult( std::vector<G4DynamicParticle *> secondaryParticleVector,
302                                     G4FragmentVector * aResult )
303{
304  // Fill the vector pParticleChange with secondary particles stored in vector.
305  G4cout <<"Size of the secondary particle vector = " << secondaryParticleVector.size() << G4endl;
306  for ( size_t i = 0 ; i < secondaryParticleVector.size() ; i++ ) {
307      G4int aZ = static_cast<G4int> (secondaryParticleVector[i]->GetDefinition()->GetPDGCharge() );
308      G4int aA = static_cast<G4int> (secondaryParticleVector[i]->GetDefinition()->GetBaryonNumber());
309      G4LorentzVector aMomentum = secondaryParticleVector[i]->Get4Momentum();
310      if(aA>0) {
311        aResult->push_back( new G4Fragment(aA, aZ, aMomentum) ); 
312      } else {
313        aResult->push_back( new G4Fragment(aMomentum, secondaryParticleVector[i]->GetDefinition()) ); 
314      }
315    }
316  return;
317}
Note: See TracBrowser for help on using the repository browser.