| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * *
|
|---|
| 21 | // * Parts of this code which have been developed by QinetiQ Ltd *
|
|---|
| 22 | // * under contract to the European Space Agency (ESA) are the *
|
|---|
| 23 | // * intellectual property of ESA. Rights to use, copy, modify and *
|
|---|
| 24 | // * redistribute this software for general public use are granted *
|
|---|
| 25 | // * in compliance with any licensing, distribution and development *
|
|---|
| 26 | // * policy adopted by the Geant4 Collaboration. This code has been *
|
|---|
| 27 | // * written by QinetiQ Ltd for the European Space Agency, under ESA *
|
|---|
| 28 | // * contract 17191/03/NL/LvH (Aurora Programme). *
|
|---|
| 29 | // * *
|
|---|
| 30 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 31 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 32 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 33 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 34 | // ********************************************************************
|
|---|
| 35 | //
|
|---|
| 36 | // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|---|
| 37 | //
|
|---|
| 38 | // MODULE: G4WilsonAbrasionModel.cc
|
|---|
| 39 | //
|
|---|
| 40 | // Version: B.2
|
|---|
| 41 | // Date: 18/01/05
|
|---|
| 42 | // Author: P R Truscott
|
|---|
| 43 | // Organisation: QinetiQ Ltd, UK
|
|---|
| 44 | // Customer: ESA/ESTEC, NOORDWIJK
|
|---|
| 45 | // Contract: 17191/03/NL/LvH
|
|---|
| 46 | //
|
|---|
| 47 | // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|---|
| 48 | //
|
|---|
| 49 | // CHANGE HISTORY
|
|---|
| 50 | // --------------
|
|---|
| 51 | //
|
|---|
| 52 | // 6 October 2003, P R Truscott, QinetiQ Ltd, UK
|
|---|
| 53 | // Created.
|
|---|
| 54 | //
|
|---|
| 55 | // 15 March 2004, P R Truscott, QinetiQ Ltd, UK
|
|---|
| 56 | // Beta release
|
|---|
| 57 | //
|
|---|
| 58 | // 18 January 2005, M H Mendenhall, Vanderbilt University, US
|
|---|
| 59 | // Pointers to theAbrasionGeometry and products generated by the deexcitation
|
|---|
| 60 | // handler deleted to prevent memory leaks. Also particle change of projectile
|
|---|
| 61 | // fragment previously not properly defined.
|
|---|
| 62 | //
|
|---|
| 63 | // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|---|
| 64 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 65 | //
|
|---|
| 66 | #include "G4WilsonAbrasionModel.hh"
|
|---|
| 67 | #include "G4WilsonRadius.hh"
|
|---|
| 68 | #include "G4NuclearAbrasionGeometry.hh"
|
|---|
| 69 | #include "G4WilsonAblationModel.hh"
|
|---|
| 70 |
|
|---|
| 71 | #include "G4ExcitationHandler.hh"
|
|---|
| 72 | #include "G4Evaporation.hh"
|
|---|
| 73 | #include "G4FermiBreakUp.hh"
|
|---|
| 74 | #include "G4StatMF.hh"
|
|---|
| 75 | #include "G4ParticleDefinition.hh"
|
|---|
| 76 | #include "G4DynamicParticle.hh"
|
|---|
| 77 | #include "Randomize.hh"
|
|---|
| 78 | #include "G4Fragment.hh"
|
|---|
| 79 | #include "G4VNuclearDensity.hh"
|
|---|
| 80 | #include "G4NuclearShellModelDensity.hh"
|
|---|
| 81 | #include "G4NuclearFermiDensity.hh"
|
|---|
| 82 | #include "G4FermiMomentum.hh"
|
|---|
| 83 | #include "G4ReactionProductVector.hh"
|
|---|
| 84 | #include "G4LorentzVector.hh"
|
|---|
| 85 | #include "G4ParticleMomentum.hh"
|
|---|
| 86 | #include "G4Poisson.hh"
|
|---|
| 87 | #include "G4ParticleTable.hh"
|
|---|
| 88 | #include "G4IonTable.hh"
|
|---|
| 89 | #include "globals.hh"
|
|---|
| 90 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 91 | //
|
|---|
| 92 | G4WilsonAbrasionModel::G4WilsonAbrasionModel (G4bool useAblation1)
|
|---|
| 93 | :G4HadronicInteraction("G4WilsonAbrasion")
|
|---|
| 94 | {
|
|---|
| 95 | //
|
|---|
| 96 | //
|
|---|
| 97 | // Send message to stdout to advise that the G4Abrasion model is being used.
|
|---|
| 98 | //
|
|---|
| 99 | PrintWelcomeMessage();
|
|---|
| 100 | //
|
|---|
| 101 | //
|
|---|
| 102 | // Set the default verbose level to 0 - no output.
|
|---|
| 103 | //
|
|---|
| 104 | verboseLevel = 0;
|
|---|
| 105 | useAblation = useAblation1;
|
|---|
| 106 | //
|
|---|
| 107 | //
|
|---|
| 108 | // No de-excitation handler has been supplied - define the default handler.
|
|---|
| 109 | //
|
|---|
| 110 | theExcitationHandler = new G4ExcitationHandler;
|
|---|
| 111 | theExcitationHandlerx = new G4ExcitationHandler;
|
|---|
| 112 | if (useAblation)
|
|---|
| 113 | {
|
|---|
| 114 | theAblation = new G4WilsonAblationModel;
|
|---|
| 115 | theAblation->SetVerboseLevel(verboseLevel);
|
|---|
| 116 | theExcitationHandler->SetEvaporation(theAblation);
|
|---|
| 117 | theExcitationHandlerx->SetEvaporation(theAblation);
|
|---|
| 118 | }
|
|---|
| 119 | else
|
|---|
| 120 | {
|
|---|
| 121 | theAblation = NULL;
|
|---|
| 122 | G4Evaporation * theEvaporation = new G4Evaporation;
|
|---|
| 123 | G4FermiBreakUp * theFermiBreakUp = new G4FermiBreakUp;
|
|---|
| 124 | G4StatMF * theMF = new G4StatMF;
|
|---|
| 125 | theExcitationHandler->SetEvaporation(theEvaporation);
|
|---|
| 126 | theExcitationHandler->SetFermiModel(theFermiBreakUp);
|
|---|
| 127 | theExcitationHandler->SetMultiFragmentation(theMF);
|
|---|
| 128 | theExcitationHandler->SetMaxAandZForFermiBreakUp(12, 6);
|
|---|
| 129 | theExcitationHandler->SetMinEForMultiFrag(5.0*MeV);
|
|---|
| 130 |
|
|---|
| 131 | theEvaporation = new G4Evaporation;
|
|---|
| 132 | theFermiBreakUp = new G4FermiBreakUp;
|
|---|
| 133 | theExcitationHandlerx->SetEvaporation(theEvaporation);
|
|---|
| 134 | theExcitationHandlerx->SetFermiModel(theFermiBreakUp);
|
|---|
| 135 | theExcitationHandlerx->SetMaxAandZForFermiBreakUp(12, 6);
|
|---|
| 136 | }
|
|---|
| 137 | //
|
|---|
| 138 | //
|
|---|
| 139 | // Set the minimum and maximum range for the model (despite nomanclature, this
|
|---|
| 140 | // is in energy per nucleon number).
|
|---|
| 141 | //
|
|---|
| 142 | SetMinEnergy(70.0*MeV);
|
|---|
| 143 | SetMaxEnergy(10.1*GeV);
|
|---|
| 144 | isBlocked = false;
|
|---|
| 145 | //
|
|---|
| 146 | //
|
|---|
| 147 | // npK, when mutiplied by the nuclear Fermi momentum, determines the range of
|
|---|
| 148 | // momentum over which the secondary nucleon momentum is sampled.
|
|---|
| 149 | //
|
|---|
| 150 | npK = 5.0;
|
|---|
| 151 | B = 10.0 * MeV;
|
|---|
| 152 | third = 1.0 / 3.0;
|
|---|
| 153 | conserveEnergy = false;
|
|---|
| 154 | conserveMomentum = true;
|
|---|
| 155 | }
|
|---|
| 156 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 157 | //
|
|---|
| 158 | G4WilsonAbrasionModel::G4WilsonAbrasionModel (G4ExcitationHandler *aExcitationHandler)
|
|---|
| 159 | {
|
|---|
| 160 | //
|
|---|
| 161 | //
|
|---|
| 162 | // Send message to stdout to advise that the G4Abrasion model is being used.
|
|---|
| 163 | //
|
|---|
| 164 | PrintWelcomeMessage();
|
|---|
| 165 | //
|
|---|
| 166 | //
|
|---|
| 167 | // Set the default verbose level to 0 - no output.
|
|---|
| 168 | //
|
|---|
| 169 | verboseLevel = 0;
|
|---|
| 170 | //
|
|---|
| 171 | //
|
|---|
| 172 | // The user is able to provide the excitation handler as well as an argument
|
|---|
| 173 | // which is provided in this instantiation is used to determine
|
|---|
| 174 | // whether the spectators of the interaction are free following the abrasion.
|
|---|
| 175 | //
|
|---|
| 176 | theExcitationHandler = aExcitationHandler;
|
|---|
| 177 | theExcitationHandlerx = new G4ExcitationHandler;
|
|---|
| 178 | G4Evaporation * theEvaporation = new G4Evaporation;
|
|---|
| 179 | G4FermiBreakUp * theFermiBreakUp = new G4FermiBreakUp;
|
|---|
| 180 | theExcitationHandlerx->SetEvaporation(theEvaporation);
|
|---|
| 181 | theExcitationHandlerx->SetFermiModel(theFermiBreakUp);
|
|---|
| 182 | theExcitationHandlerx->SetMaxAandZForFermiBreakUp(12, 6);
|
|---|
| 183 | //
|
|---|
| 184 | //
|
|---|
| 185 | // Set the minimum and maximum range for the model (despite nomanclature, this
|
|---|
| 186 | // is in energy per nucleon number).
|
|---|
| 187 | //
|
|---|
| 188 | SetMinEnergy(70.0*MeV);
|
|---|
| 189 | SetMaxEnergy(10.1*GeV);
|
|---|
| 190 | isBlocked = false;
|
|---|
| 191 | //
|
|---|
| 192 | //
|
|---|
| 193 | // npK, when mutiplied by the nuclear Fermi momentum, determines the range of
|
|---|
| 194 | // momentum over which the secondary nucleon momentum is sampled.
|
|---|
| 195 | //
|
|---|
| 196 | npK = 5.0;
|
|---|
| 197 | B = 10.0 * MeV;
|
|---|
| 198 | third = 1.0 / 3.0;
|
|---|
| 199 | conserveEnergy = false;
|
|---|
| 200 | conserveMomentum = true;
|
|---|
| 201 | }
|
|---|
| 202 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 203 | //
|
|---|
| 204 | G4WilsonAbrasionModel::~G4WilsonAbrasionModel ()
|
|---|
| 205 | {
|
|---|
| 206 | //
|
|---|
| 207 | //
|
|---|
| 208 | // The destructor doesn't have to do a great deal!
|
|---|
| 209 | //
|
|---|
| 210 | delete theExcitationHandler;
|
|---|
| 211 | delete theExcitationHandlerx;
|
|---|
| 212 | }
|
|---|
| 213 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 214 | //
|
|---|
| 215 | G4HadFinalState *G4WilsonAbrasionModel::ApplyYourself (
|
|---|
| 216 | const G4HadProjectile &theTrack, G4Nucleus &theTarget)
|
|---|
| 217 | {
|
|---|
| 218 | //
|
|---|
| 219 | //
|
|---|
| 220 | // The secondaries will be returned in G4HadFinalState &theParticleChange -
|
|---|
| 221 | // initialise this. The original track will always be discontinued and
|
|---|
| 222 | // secondaries followed.
|
|---|
| 223 | //
|
|---|
| 224 | theParticleChange.Clear();
|
|---|
| 225 | theParticleChange.SetStatusChange(stopAndKill);
|
|---|
| 226 | //
|
|---|
| 227 | //
|
|---|
| 228 | // Get relevant information about the projectile and target (A, Z, energy/nuc,
|
|---|
| 229 | // momentum, etc).
|
|---|
| 230 | //
|
|---|
| 231 | const G4ParticleDefinition *definitionP = theTrack.GetDefinition();
|
|---|
| 232 | const G4double AP = definitionP->GetBaryonNumber();
|
|---|
| 233 | const G4double ZP = definitionP->GetPDGCharge();
|
|---|
| 234 | G4LorentzVector pP = theTrack.Get4Momentum();
|
|---|
| 235 | G4double E = theTrack.GetKineticEnergy()/AP;
|
|---|
| 236 | G4double AT = theTarget.GetN();
|
|---|
| 237 | G4double ZT = theTarget.GetZ();
|
|---|
| 238 | G4double TotalEPre = theTrack.GetTotalEnergy() +
|
|---|
| 239 | theTarget.AtomicMass(AT, ZT) + theTarget.GetEnergyDeposit();
|
|---|
| 240 | G4double TotalEPost = 0.0;
|
|---|
| 241 | //
|
|---|
| 242 | //
|
|---|
| 243 | // Determine the radii of the projectile and target nuclei.
|
|---|
| 244 | //
|
|---|
| 245 | G4WilsonRadius aR;
|
|---|
| 246 | G4double rP = aR.GetWilsonRadius(AP);
|
|---|
| 247 | G4double rT = aR.GetWilsonRadius(AT);
|
|---|
| 248 | G4double rPsq = rP * rP;
|
|---|
| 249 | G4double rTsq = rT * rT;
|
|---|
| 250 | if (verboseLevel >= 2)
|
|---|
| 251 | {
|
|---|
| 252 | G4cout <<"########################################"
|
|---|
| 253 | <<"########################################"
|
|---|
| 254 | <<G4endl;
|
|---|
| 255 | G4cout.precision(6);
|
|---|
| 256 | G4cout <<"IN G4WilsonAbrasionModel" <<G4endl;
|
|---|
| 257 | G4cout <<"Initial projectile A=" <<AP
|
|---|
| 258 | <<", Z=" <<ZP
|
|---|
| 259 | <<", radius = " <<rP/fermi <<" fm"
|
|---|
| 260 | <<G4endl;
|
|---|
| 261 | G4cout <<"Initial target A=" <<AT
|
|---|
| 262 | <<", Z=" <<ZT
|
|---|
| 263 | <<", radius = " <<rT/fermi <<" fm"
|
|---|
| 264 | <<G4endl;
|
|---|
| 265 | G4cout <<"Projectile momentum and Energy/nuc = " <<pP <<" ," <<E <<G4endl;
|
|---|
| 266 | }
|
|---|
| 267 | //
|
|---|
| 268 | //
|
|---|
| 269 | // The following variables are used to determine the impact parameter in the
|
|---|
| 270 | // near-field (i.e. taking into consideration the electrostatic repulsion).
|
|---|
| 271 | //
|
|---|
| 272 | G4double rm = ZP * ZT * elm_coupling / (E * AP);
|
|---|
| 273 | G4double r = 0.0;
|
|---|
| 274 | G4double rsq = 0.0;
|
|---|
| 275 | //
|
|---|
| 276 | //
|
|---|
| 277 | // Initialise some of the variables which wll be used to calculate the chord-
|
|---|
| 278 | // length for nucleons in the projectile and target, and hence calculate the
|
|---|
| 279 | // number of abraded nucleons and the excitation energy.
|
|---|
| 280 | //
|
|---|
| 281 | G4NuclearAbrasionGeometry *theAbrasionGeometry = NULL;
|
|---|
| 282 | G4double CT = 0.0;
|
|---|
| 283 | G4double F = 0.0;
|
|---|
| 284 | G4int Dabr = 0;
|
|---|
| 285 | //
|
|---|
| 286 | //
|
|---|
| 287 | // The following loop is performed until the number of nucleons which are
|
|---|
| 288 | // abraded by the process is >1, i.e. an interaction MUST occur.
|
|---|
| 289 | //
|
|---|
| 290 | while (Dabr == 0)
|
|---|
| 291 | {
|
|---|
| 292 | // Added by MHM 20050119 to fix leaking memory on second pass through this loop
|
|---|
| 293 | if (theAbrasionGeometry)
|
|---|
| 294 | {
|
|---|
| 295 | delete theAbrasionGeometry;
|
|---|
| 296 | theAbrasionGeometry = NULL;
|
|---|
| 297 | }
|
|---|
| 298 | //
|
|---|
| 299 | //
|
|---|
| 300 | // Sample the impact parameter. For the moment, this class takes account of
|
|---|
| 301 | // electrostatic effects on the impact parameter, but (like HZETRN AND NUCFRG2)
|
|---|
| 302 | // does not make any correction for the effects of nuclear-nuclear repulsion.
|
|---|
| 303 | //
|
|---|
| 304 | G4double rPT = rP + rT;
|
|---|
| 305 | G4double rPTsq = rPT * rPT;
|
|---|
| 306 | r = 1.1 * rPT;
|
|---|
| 307 | while (r > rPT)
|
|---|
| 308 | {
|
|---|
| 309 | G4double bsq = rPTsq * G4UniformRand();
|
|---|
| 310 | r = (rm + std::sqrt(rm*rm + 4.0*bsq)) / 2.0;
|
|---|
| 311 | }
|
|---|
| 312 | rsq = r * r;
|
|---|
| 313 | //
|
|---|
| 314 | //
|
|---|
| 315 | // Now determine the chord-length through the target nucleus.
|
|---|
| 316 | //
|
|---|
| 317 | if (rT > rP)
|
|---|
| 318 | {
|
|---|
| 319 | G4double x = (rPsq + rsq - rTsq) / 2.0 / r;
|
|---|
| 320 | if (x > 0.0) CT = 2.0 * std::sqrt(rTsq - x*x);
|
|---|
| 321 | else CT = 2.0 * std::sqrt(rTsq - rsq);
|
|---|
| 322 | }
|
|---|
| 323 | else
|
|---|
| 324 | {
|
|---|
| 325 | G4double x = (rTsq + rsq - rPsq) / 2.0 / r;
|
|---|
| 326 | if (x > 0.0) CT = 2.0 * std::sqrt(rTsq - x*x);
|
|---|
| 327 | else CT = 2.0 * rT;
|
|---|
| 328 | }
|
|---|
| 329 | //
|
|---|
| 330 | //
|
|---|
| 331 | // Determine the number of abraded nucleons. Note that the mean number of
|
|---|
| 332 | // abraded nucleons is used to sample the Poisson distribution. The Poisson
|
|---|
| 333 | // distribution is sampled only ten times with the current impact parameter,
|
|---|
| 334 | // and if it fails after this to find a case for which the number of abraded
|
|---|
| 335 | // nucleons >1, the impact parameter is re-sampled.
|
|---|
| 336 | //
|
|---|
| 337 | theAbrasionGeometry = new G4NuclearAbrasionGeometry(AP,AT,r);
|
|---|
| 338 | F = theAbrasionGeometry->F();
|
|---|
| 339 | G4double lambda = 16.6*fermi / std::pow(E/MeV,0.26);
|
|---|
| 340 | G4double Mabr = F * AP * (1.0 - std::exp(-CT/lambda));
|
|---|
| 341 | G4long n = 0;
|
|---|
| 342 | for (G4int i = 0; i<10; i++)
|
|---|
| 343 | {
|
|---|
| 344 | n = G4Poisson(Mabr);
|
|---|
| 345 | if (n > 0)
|
|---|
| 346 | {
|
|---|
| 347 | if (n>AP) Dabr = (G4int) AP;
|
|---|
| 348 | else Dabr = (G4int) n;
|
|---|
| 349 | break;
|
|---|
| 350 | }
|
|---|
| 351 | }
|
|---|
| 352 | }
|
|---|
| 353 | if (verboseLevel >= 2)
|
|---|
| 354 | {
|
|---|
| 355 | G4cout <<G4endl;
|
|---|
| 356 | G4cout <<"Impact parameter = " <<r/fermi <<" fm" <<G4endl;
|
|---|
| 357 | G4cout <<"# Abraded nucleons = " <<Dabr <<G4endl;
|
|---|
| 358 | }
|
|---|
| 359 | //
|
|---|
| 360 | //
|
|---|
| 361 | // The number of abraded nucleons must be no greater than the number of
|
|---|
| 362 | // nucleons in either the projectile or the target. If AP - Dabr < 2 or
|
|---|
| 363 | // AT - Dabr < 2 then either we have only a nucleon left behind in the
|
|---|
| 364 | // projectile/target or we've tried to abrade too many nucleons - and Dabr
|
|---|
| 365 | // should be limited.
|
|---|
| 366 | //
|
|---|
| 367 | if (AP - (G4double) Dabr < 2.0) Dabr = (G4int) AP;
|
|---|
| 368 | if (AT - (G4double) Dabr < 2.0) Dabr = (G4int) AT;
|
|---|
| 369 | //
|
|---|
| 370 | //
|
|---|
| 371 | // Determine the abraded secondary nucleons from the projectile. *fragmentP
|
|---|
| 372 | // is a pointer to the prefragment from the projectile and nSecP is the number
|
|---|
| 373 | // of nucleons in theParticleChange which have been abraded. The total energy
|
|---|
| 374 | // from these is determined.
|
|---|
| 375 | //
|
|---|
| 376 | G4ThreeVector boost = pP.findBoostToCM();
|
|---|
| 377 | G4Fragment *fragmentP = GetAbradedNucleons (Dabr, AP, ZP, rP);
|
|---|
| 378 | G4int nSecP = theParticleChange.GetNumberOfSecondaries();
|
|---|
| 379 | G4int i = 0;
|
|---|
| 380 | for (i=0; i<nSecP; i++)
|
|---|
| 381 | {
|
|---|
| 382 | TotalEPost += theParticleChange.GetSecondary(i)->
|
|---|
| 383 | GetParticle()->GetTotalEnergy();
|
|---|
| 384 | }
|
|---|
| 385 | //
|
|---|
| 386 | //
|
|---|
| 387 | // Determine the number of spectators in the interaction region for the
|
|---|
| 388 | // projectile.
|
|---|
| 389 | //
|
|---|
| 390 | G4int DspcP = (G4int) (AP*F) - Dabr;
|
|---|
| 391 | if (DspcP <= 0) DspcP = 0;
|
|---|
| 392 | else if (DspcP > AP-Dabr) DspcP = ((G4int) AP) - Dabr;
|
|---|
| 393 | //
|
|---|
| 394 | //
|
|---|
| 395 | // Determine excitation energy associated with excess surface area of the
|
|---|
| 396 | // projectile (EsP) and the excitation due to scattering of nucleons which are
|
|---|
| 397 | // retained within the projectile (ExP). Add the total energy from the excited
|
|---|
| 398 | // nucleus to the total energy of the secondaries.
|
|---|
| 399 | //
|
|---|
| 400 | G4bool excitationAbsorbedByProjectile = false;
|
|---|
| 401 | if (fragmentP != NULL)
|
|---|
| 402 | {
|
|---|
| 403 | G4double EsP = theAbrasionGeometry->GetExcitationEnergyOfProjectile();
|
|---|
| 404 | G4double ExP = 0.0;
|
|---|
| 405 | if (Dabr < AT)
|
|---|
| 406 | excitationAbsorbedByProjectile = G4UniformRand() < 0.5;
|
|---|
| 407 | if (excitationAbsorbedByProjectile)
|
|---|
| 408 | ExP = GetNucleonInducedExcitation(rP, rT, r);
|
|---|
| 409 | G4double xP = EsP + ExP;
|
|---|
| 410 | if (xP > B*(AP-Dabr)) xP = B*(AP-Dabr);
|
|---|
| 411 | G4LorentzVector lorentzVector = fragmentP->GetMomentum();
|
|---|
| 412 | lorentzVector.setE(lorentzVector.e()+xP);
|
|---|
| 413 | fragmentP->SetMomentum(lorentzVector);
|
|---|
| 414 | TotalEPost += lorentzVector.e();
|
|---|
| 415 | }
|
|---|
| 416 | G4double EMassP = TotalEPost;
|
|---|
| 417 | //
|
|---|
| 418 | //
|
|---|
| 419 | // Determine the abraded secondary nucleons from the target. Note that it's
|
|---|
| 420 | // assumed that the same number of nucleons are abraded from the target as for
|
|---|
| 421 | // the projectile, and obviously no boost is applied to the products. *fragmentT
|
|---|
| 422 | // is a pointer to the prefragment from the target and nSec is the total number
|
|---|
| 423 | // of nucleons in theParticleChange which have been abraded. The total energy
|
|---|
| 424 | // from these is determined.
|
|---|
| 425 | //
|
|---|
| 426 | G4Fragment *fragmentT = GetAbradedNucleons (Dabr, AT, ZT, rT);
|
|---|
| 427 | G4int nSec = theParticleChange.GetNumberOfSecondaries();
|
|---|
| 428 | for (i=nSecP; i<nSec; i++)
|
|---|
| 429 | {
|
|---|
| 430 | TotalEPost += theParticleChange.GetSecondary(i)->
|
|---|
| 431 | GetParticle()->GetTotalEnergy();
|
|---|
| 432 | }
|
|---|
| 433 | //
|
|---|
| 434 | //
|
|---|
| 435 | // Determine the number of spectators in the interaction region for the
|
|---|
| 436 | // target.
|
|---|
| 437 | //
|
|---|
| 438 | G4int DspcT = (G4int) (AT*F) - Dabr;
|
|---|
| 439 | if (DspcT <= 0) DspcT = 0;
|
|---|
| 440 | else if (DspcT > AP-Dabr) DspcT = ((G4int) AT) - Dabr;
|
|---|
| 441 | //
|
|---|
| 442 | //
|
|---|
| 443 | // Determine excitation energy associated with excess surface area of the
|
|---|
| 444 | // target (EsT) and the excitation due to scattering of nucleons which are
|
|---|
| 445 | // retained within the target (ExT). Add the total energy from the excited
|
|---|
| 446 | // nucleus to the total energy of the secondaries.
|
|---|
| 447 | //
|
|---|
| 448 | if (fragmentT != NULL)
|
|---|
| 449 | {
|
|---|
| 450 | G4double EsT = theAbrasionGeometry->GetExcitationEnergyOfTarget();
|
|---|
| 451 | G4double ExT = 0.0;
|
|---|
| 452 | if (!excitationAbsorbedByProjectile)
|
|---|
| 453 | ExT = GetNucleonInducedExcitation(rT, rP, r);
|
|---|
| 454 | G4double xT = EsT + ExT;
|
|---|
| 455 | if (xT > B*(AT-Dabr)) xT = B*(AT-Dabr);
|
|---|
| 456 | G4LorentzVector lorentzVector = fragmentT->GetMomentum();
|
|---|
| 457 | lorentzVector.setE(lorentzVector.e()+xT);
|
|---|
| 458 | fragmentT->SetMomentum(lorentzVector);
|
|---|
| 459 | TotalEPost += lorentzVector.e();
|
|---|
| 460 | }
|
|---|
| 461 | //
|
|---|
| 462 | //
|
|---|
| 463 | // Now determine the difference between the pre and post interaction
|
|---|
| 464 | // energy - this will be used to determine the Lorentz boost if conservation
|
|---|
| 465 | // of energy is to be imposed/attempted.
|
|---|
| 466 | //
|
|---|
| 467 | G4double deltaE = TotalEPre - TotalEPost;
|
|---|
| 468 | if (deltaE > 0.0 && conserveEnergy)
|
|---|
| 469 | {
|
|---|
| 470 | G4double beta = std::sqrt(1.0 - EMassP*EMassP/std::pow(deltaE+EMassP,2.0));
|
|---|
| 471 | boost = boost / boost.mag() * beta;
|
|---|
| 472 | }
|
|---|
| 473 | //
|
|---|
| 474 | //
|
|---|
| 475 | // Now boost the secondaries from the projectile.
|
|---|
| 476 | //
|
|---|
| 477 | G4ThreeVector pBalance = pP.vect();
|
|---|
| 478 | for (i=0; i<nSecP; i++)
|
|---|
| 479 | {
|
|---|
| 480 | G4DynamicParticle *dynamicP = theParticleChange.GetSecondary(i)->
|
|---|
| 481 | GetParticle();
|
|---|
| 482 | G4LorentzVector lorentzVector = dynamicP->Get4Momentum();
|
|---|
| 483 | lorentzVector.boost(-boost);
|
|---|
| 484 | dynamicP->Set4Momentum(lorentzVector);
|
|---|
| 485 | pBalance -= lorentzVector.vect();
|
|---|
| 486 | }
|
|---|
| 487 | //
|
|---|
| 488 | //
|
|---|
| 489 | // Set the boost for the projectile prefragment. This is now based on the
|
|---|
| 490 | // conservation of momentum. However, if the user selected momentum of the
|
|---|
| 491 | // prefragment is not to be conserved this simply boosted to the velocity of the
|
|---|
| 492 | // original projectile times the ratio of the unexcited to the excited mass
|
|---|
| 493 | // of the prefragment (the excitation increases the effective mass of the
|
|---|
| 494 | // prefragment, and therefore modifying the boost is an attempt to prevent
|
|---|
| 495 | // the momentum of the prefragment being excessive).
|
|---|
| 496 | //
|
|---|
| 497 | if (fragmentP != NULL)
|
|---|
| 498 | {
|
|---|
| 499 | G4LorentzVector lorentzVector = fragmentP->GetMomentum();
|
|---|
| 500 | G4double m = lorentzVector.m();
|
|---|
| 501 | if (conserveMomentum)
|
|---|
| 502 | fragmentP->SetMomentum
|
|---|
| 503 | (G4LorentzVector(pBalance,std::sqrt(pBalance.mag2()+m*m+1.0*eV*eV)));
|
|---|
| 504 | else
|
|---|
| 505 | {
|
|---|
| 506 | G4double mg = fragmentP->GetGroundStateMass();
|
|---|
| 507 | fragmentP->SetMomentum(lorentzVector.boost(-boost * mg/m));
|
|---|
| 508 | }
|
|---|
| 509 | }
|
|---|
| 510 | //
|
|---|
| 511 | //
|
|---|
| 512 | // Output information to user if verbose information requested.
|
|---|
| 513 | //
|
|---|
| 514 | if (verboseLevel >= 2)
|
|---|
| 515 | {
|
|---|
| 516 | G4cout <<G4endl;
|
|---|
| 517 | G4cout <<"-----------------------------------" <<G4endl;
|
|---|
| 518 | G4cout <<"Secondary nucleons from projectile:" <<G4endl;
|
|---|
| 519 | G4cout <<"-----------------------------------" <<G4endl;
|
|---|
| 520 | G4cout.precision(7);
|
|---|
| 521 | for (i=0; i<nSecP; i++)
|
|---|
| 522 | {
|
|---|
| 523 | G4cout <<"Particle # " <<i <<G4endl;
|
|---|
| 524 | theParticleChange.GetSecondary(i)->GetParticle()->DumpInfo();
|
|---|
| 525 | G4DynamicParticle *dyn = theParticleChange.GetSecondary(i)->GetParticle();
|
|---|
| 526 | G4cout <<"New nucleon (P) " <<dyn->GetDefinition()->GetParticleName()
|
|---|
| 527 | <<" : " <<dyn->Get4Momentum()
|
|---|
| 528 | <<G4endl;
|
|---|
| 529 | }
|
|---|
| 530 | G4cout <<"---------------------------" <<G4endl;
|
|---|
| 531 | G4cout <<"The projectile prefragment:" <<G4endl;
|
|---|
| 532 | G4cout <<"---------------------------" <<G4endl;
|
|---|
| 533 | if (fragmentP != NULL)
|
|---|
| 534 | G4cout <<*fragmentP <<G4endl;
|
|---|
| 535 | else
|
|---|
| 536 | G4cout <<"(No residual prefragment)" <<G4endl;
|
|---|
| 537 | G4cout <<G4endl;
|
|---|
| 538 | G4cout <<"-------------------------------" <<G4endl;
|
|---|
| 539 | G4cout <<"Secondary nucleons from target:" <<G4endl;
|
|---|
| 540 | G4cout <<"-------------------------------" <<G4endl;
|
|---|
| 541 | G4cout.precision(7);
|
|---|
| 542 | for (i=nSecP; i<nSec; i++)
|
|---|
| 543 | {
|
|---|
| 544 | G4cout <<"Particle # " <<i <<G4endl;
|
|---|
| 545 | theParticleChange.GetSecondary(i)->GetParticle()->DumpInfo();
|
|---|
| 546 | G4DynamicParticle *dyn = theParticleChange.GetSecondary(i)->GetParticle();
|
|---|
| 547 | G4cout <<"New nucleon (T) " <<dyn->GetDefinition()->GetParticleName()
|
|---|
| 548 | <<" : " <<dyn->Get4Momentum()
|
|---|
| 549 | <<G4endl;
|
|---|
| 550 | }
|
|---|
| 551 | G4cout <<"-----------------------" <<G4endl;
|
|---|
| 552 | G4cout <<"The target prefragment:" <<G4endl;
|
|---|
| 553 | G4cout <<"-----------------------" <<G4endl;
|
|---|
| 554 | if (fragmentT != NULL)
|
|---|
| 555 | G4cout <<*fragmentT <<G4endl;
|
|---|
| 556 | else
|
|---|
| 557 | G4cout <<"(No residual prefragment)" <<G4endl;
|
|---|
| 558 | }
|
|---|
| 559 | //
|
|---|
| 560 | //
|
|---|
| 561 | // Now we can decay the nuclear fragments if present. The secondaries are
|
|---|
| 562 | // collected and boosted as well. This is performed first for the projectile...
|
|---|
| 563 | //
|
|---|
| 564 | if (fragmentP !=NULL)
|
|---|
| 565 | {
|
|---|
| 566 | G4ReactionProductVector *products = NULL;
|
|---|
| 567 | if (fragmentP->GetZ() != fragmentP->GetA())
|
|---|
| 568 | products = theExcitationHandler->BreakItUp(*fragmentP);
|
|---|
| 569 | else
|
|---|
| 570 | products = theExcitationHandlerx->BreakItUp(*fragmentP);
|
|---|
| 571 | delete fragmentP;
|
|---|
| 572 | fragmentP = NULL;
|
|---|
| 573 |
|
|---|
| 574 | G4ReactionProductVector::iterator iter;
|
|---|
| 575 | for (iter = products->begin(); iter != products->end(); ++iter)
|
|---|
| 576 | {
|
|---|
| 577 | G4DynamicParticle *secondary =
|
|---|
| 578 | new G4DynamicParticle((*iter)->GetDefinition(),
|
|---|
| 579 | (*iter)->GetTotalEnergy(), (*iter)->GetMomentum());
|
|---|
| 580 | theParticleChange.AddSecondary (secondary); // Added MHM 20050118
|
|---|
| 581 | G4String particleName = (*iter)->GetDefinition()->GetParticleName();
|
|---|
| 582 | delete (*iter); // get rid of leftover particle def! // Added MHM 20050118
|
|---|
| 583 | if (verboseLevel >= 2 && particleName.find("[",0) < particleName.size())
|
|---|
| 584 | {
|
|---|
| 585 | G4cout <<"------------------------" <<G4endl;
|
|---|
| 586 | G4cout <<"The projectile fragment:" <<G4endl;
|
|---|
| 587 | G4cout <<"------------------------" <<G4endl;
|
|---|
| 588 | G4cout <<" fragmentP = " <<particleName
|
|---|
| 589 | <<" Energy = " <<secondary->GetKineticEnergy()
|
|---|
| 590 | <<G4endl;
|
|---|
| 591 | }
|
|---|
| 592 | }
|
|---|
| 593 | delete products; // Added MHM 20050118
|
|---|
| 594 | }
|
|---|
| 595 | //
|
|---|
| 596 | //
|
|---|
| 597 | // Now decay the target nucleus - no boost is applied since in this
|
|---|
| 598 | // approximation it is assumed that there is negligible momentum transfer from
|
|---|
| 599 | // the projectile.
|
|---|
| 600 | //
|
|---|
| 601 | if (fragmentT != NULL)
|
|---|
| 602 | {
|
|---|
| 603 | G4ReactionProductVector *products = NULL;
|
|---|
| 604 | if (fragmentT->GetZ() != fragmentT->GetA())
|
|---|
| 605 | products = theExcitationHandler->BreakItUp(*fragmentT);
|
|---|
| 606 | else
|
|---|
| 607 | products = theExcitationHandlerx->BreakItUp(*fragmentT);
|
|---|
| 608 | delete fragmentT;
|
|---|
| 609 | fragmentT = NULL;
|
|---|
| 610 |
|
|---|
| 611 | G4ReactionProductVector::iterator iter;
|
|---|
| 612 | for (iter = products->begin(); iter != products->end(); ++iter)
|
|---|
| 613 | {
|
|---|
| 614 | G4DynamicParticle *secondary =
|
|---|
| 615 | new G4DynamicParticle((*iter)->GetDefinition(),
|
|---|
| 616 | (*iter)->GetTotalEnergy(), (*iter)->GetMomentum());
|
|---|
| 617 | theParticleChange.AddSecondary (secondary);
|
|---|
| 618 | G4String particleName = (*iter)->GetDefinition()->GetParticleName();
|
|---|
| 619 | delete (*iter); // get rid of leftover particle def! // Added MHM 20050118
|
|---|
| 620 | if (verboseLevel >= 2 && particleName.find("[",0) < particleName.size())
|
|---|
| 621 | {
|
|---|
| 622 | G4cout <<"--------------------" <<G4endl;
|
|---|
| 623 | G4cout <<"The target fragment:" <<G4endl;
|
|---|
| 624 | G4cout <<"--------------------" <<G4endl;
|
|---|
| 625 | G4cout <<" fragmentT = " <<particleName
|
|---|
| 626 | <<" Energy = " <<secondary->GetKineticEnergy()
|
|---|
| 627 | <<G4endl;
|
|---|
| 628 | }
|
|---|
| 629 | }
|
|---|
| 630 | delete products; // Added MHM 20050118
|
|---|
| 631 | }
|
|---|
| 632 |
|
|---|
| 633 | if (verboseLevel >= 2)
|
|---|
| 634 | G4cout <<"########################################"
|
|---|
| 635 | <<"########################################"
|
|---|
| 636 | <<G4endl;
|
|---|
| 637 |
|
|---|
| 638 | delete theAbrasionGeometry;
|
|---|
| 639 |
|
|---|
| 640 | return &theParticleChange;
|
|---|
| 641 | }
|
|---|
| 642 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 643 | //
|
|---|
| 644 | G4Fragment *G4WilsonAbrasionModel::GetAbradedNucleons (G4int Dabr, G4double A,
|
|---|
| 645 | G4double Z, G4double r)
|
|---|
| 646 | {
|
|---|
| 647 | //
|
|---|
| 648 | //
|
|---|
| 649 | // Initialise variables. tau is the Fermi radius of the nucleus. The variables
|
|---|
| 650 | // p..., C... and g(amma) are used to help sample the secondary nucleon
|
|---|
| 651 | // spectrum.
|
|---|
| 652 | //
|
|---|
| 653 |
|
|---|
| 654 | G4double pK = hbarc * std::pow(9.0 * pi / 4.0 * A, third) / (1.29 * r);
|
|---|
| 655 | if (A <= 24.0) pK *= -0.229*std::pow(A,third) + 1.62;
|
|---|
| 656 | G4double pKsq = pK * pK;
|
|---|
| 657 | G4double p1sq = 2.0/5.0 * pKsq;
|
|---|
| 658 | G4double p2sq = 6.0/5.0 * pKsq;
|
|---|
| 659 | G4double p3sq = 500.0 * 500.0;
|
|---|
| 660 | G4double C1 = 1.0;
|
|---|
| 661 | G4double C2 = 0.03;
|
|---|
| 662 | G4double C3 = 0.0002;
|
|---|
| 663 | G4double g = 90.0 * MeV;
|
|---|
| 664 | G4double maxn = C1 + C2 + C3;
|
|---|
| 665 | //
|
|---|
| 666 | //
|
|---|
| 667 | // initialise the number of secondary nucleons abraded to zero, and initially set
|
|---|
| 668 | // the type of nucleon abraded to proton ... just for now.
|
|---|
| 669 | //
|
|---|
| 670 | G4double Aabr = 0.0;
|
|---|
| 671 | G4double Zabr = 0.0;
|
|---|
| 672 | G4ParticleDefinition *typeNucleon = G4Proton::ProtonDefinition();
|
|---|
| 673 | G4DynamicParticle *dynamicNucleon = NULL;
|
|---|
| 674 | G4ParticleMomentum pabr(0.0, 0.0, 0.0);
|
|---|
| 675 | //
|
|---|
| 676 | //
|
|---|
| 677 | // Now go through each abraded nucleon and sample type, spectrum and angle.
|
|---|
| 678 | //
|
|---|
| 679 | for (G4int i=0; i<Dabr; i++)
|
|---|
| 680 | {
|
|---|
| 681 | //
|
|---|
| 682 | //
|
|---|
| 683 | // Sample the nucleon momentum distribution by simple rejection techniques. We
|
|---|
| 684 | // reject values of p == 0.0 since this causes bad behaviour in the sinh term.
|
|---|
| 685 | //
|
|---|
| 686 | G4double p = 0.0;
|
|---|
| 687 | G4bool found = false;
|
|---|
| 688 | while (!found)
|
|---|
| 689 | {
|
|---|
| 690 | while (p <= 0.0) p = npK * pK * G4UniformRand();
|
|---|
| 691 | G4double psq = p * p;
|
|---|
| 692 | found = maxn * G4UniformRand() < C1*std::exp(-psq/p1sq/2.0) +
|
|---|
| 693 | C2*std::exp(-psq/p2sq/2.0) + C3*std::exp(-psq/p3sq/2.0) + p/g/std::sinh(p/g);
|
|---|
| 694 | }
|
|---|
| 695 | //
|
|---|
| 696 | //
|
|---|
| 697 | // Determine the type of particle abraded. Can only be proton or neutron,
|
|---|
| 698 | // and the probability is determine to be proportional to the ratio as found
|
|---|
| 699 | // in the nucleus at each stage.
|
|---|
| 700 | //
|
|---|
| 701 | G4double prob = (Z-Zabr)/(A-Aabr);
|
|---|
| 702 | if (G4UniformRand()<prob)
|
|---|
| 703 | {
|
|---|
| 704 | Zabr++;
|
|---|
| 705 | typeNucleon = G4Proton::ProtonDefinition();
|
|---|
| 706 | }
|
|---|
| 707 | else
|
|---|
| 708 | typeNucleon = G4Neutron::NeutronDefinition();
|
|---|
| 709 | Aabr++;
|
|---|
| 710 | //
|
|---|
| 711 | //
|
|---|
| 712 | // The angular distribution of the secondary nucleons is approximated to an
|
|---|
| 713 | // isotropic distribution in the rest frame of the nucleus (this will be Lorentz
|
|---|
| 714 | // boosted later.
|
|---|
| 715 | //
|
|---|
| 716 | G4double costheta = 2.*G4UniformRand()-1.0;
|
|---|
| 717 | G4double sintheta = std::sqrt((1.0 - costheta)*(1.0 + costheta));
|
|---|
| 718 | G4double phi = 2.0*pi*G4UniformRand()*rad;
|
|---|
| 719 | G4ThreeVector direction(sintheta*std::cos(phi),sintheta*std::sin(phi),costheta);
|
|---|
| 720 | G4double nucleonMass = typeNucleon->GetPDGMass();
|
|---|
| 721 | G4double E = std::sqrt(p*p + nucleonMass*nucleonMass)-nucleonMass;
|
|---|
| 722 | dynamicNucleon = new G4DynamicParticle(typeNucleon,direction,E);
|
|---|
| 723 | theParticleChange.AddSecondary (dynamicNucleon);
|
|---|
| 724 | pabr += p*direction;
|
|---|
| 725 | }
|
|---|
| 726 | //
|
|---|
| 727 | //
|
|---|
| 728 | // Next determine the details of the nuclear prefragment .. that is if there
|
|---|
| 729 | // is one or more protons in the residue. (Note that the 1 eV in the total
|
|---|
| 730 | // energy is a safety factor to avoid any possibility of negative rest mass
|
|---|
| 731 | // energy.)
|
|---|
| 732 | //
|
|---|
| 733 | G4Fragment *fragment = NULL;
|
|---|
| 734 | if (Z-Zabr>=1.0)
|
|---|
| 735 | {
|
|---|
| 736 | G4double ionMass = G4ParticleTable::GetParticleTable()->GetIonTable()->
|
|---|
| 737 | GetIonMass(G4lrint(Z-Zabr),G4lrint(A-Aabr));
|
|---|
| 738 | G4double E = std::sqrt(pabr.mag2() + ionMass*ionMass);
|
|---|
| 739 | G4LorentzVector lorentzVector = G4LorentzVector(-pabr, E + 1.0*eV);
|
|---|
| 740 | fragment =
|
|---|
| 741 | new G4Fragment((G4int) (A-Aabr), (G4int) (Z-Zabr), lorentzVector);
|
|---|
| 742 | }
|
|---|
| 743 |
|
|---|
| 744 | return fragment;
|
|---|
| 745 | }
|
|---|
| 746 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 747 | //
|
|---|
| 748 | G4double G4WilsonAbrasionModel::GetNucleonInducedExcitation
|
|---|
| 749 | (G4double rP, G4double rT, G4double r)
|
|---|
| 750 | {
|
|---|
| 751 | //
|
|---|
| 752 | //
|
|---|
| 753 | // Initialise variables.
|
|---|
| 754 | //
|
|---|
| 755 | G4double Cl = 0.0;
|
|---|
| 756 | G4double rPsq = rP * rP;
|
|---|
| 757 | G4double rTsq = rT * rT;
|
|---|
| 758 | G4double rsq = r * r;
|
|---|
| 759 | //
|
|---|
| 760 | //
|
|---|
| 761 | // Depending upon the impact parameter, a different form of the chord length is
|
|---|
| 762 | // is used.
|
|---|
| 763 | //
|
|---|
| 764 | if (r > rT) Cl = 2.0*std::sqrt(rPsq + 2.0*r*rT - rsq - rTsq);
|
|---|
| 765 | else Cl = 2.0*rP;
|
|---|
| 766 |
|
|---|
| 767 | G4double bP = (rPsq+rsq-rTsq)/2.0/r;
|
|---|
| 768 | G4double Ct = 2.0*std::sqrt(rPsq - bP*bP);
|
|---|
| 769 |
|
|---|
| 770 | G4double Ex = 13.0 * Cl / fermi;
|
|---|
| 771 | if (Ct > 1.5*fermi)
|
|---|
| 772 | Ex += 13.0 * Cl / fermi /3.0 * (Ct/fermi - 1.5);
|
|---|
| 773 |
|
|---|
| 774 | return Ex;
|
|---|
| 775 | }
|
|---|
| 776 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 777 | //
|
|---|
| 778 | void G4WilsonAbrasionModel::SetUseAblation (G4bool useAblation1)
|
|---|
| 779 | {
|
|---|
| 780 | if (useAblation != useAblation1)
|
|---|
| 781 | {
|
|---|
| 782 | useAblation = useAblation1;
|
|---|
| 783 | delete theExcitationHandler;
|
|---|
| 784 | delete theExcitationHandlerx;
|
|---|
| 785 | theExcitationHandler = new G4ExcitationHandler;
|
|---|
| 786 | theExcitationHandlerx = new G4ExcitationHandler;
|
|---|
| 787 | if (useAblation)
|
|---|
| 788 | {
|
|---|
| 789 | theAblation = new G4WilsonAblationModel;
|
|---|
| 790 | theAblation->SetVerboseLevel(verboseLevel);
|
|---|
| 791 | theExcitationHandler->SetEvaporation(theAblation);
|
|---|
| 792 | theExcitationHandlerx->SetEvaporation(theAblation);
|
|---|
| 793 | }
|
|---|
| 794 | else
|
|---|
| 795 | {
|
|---|
| 796 | theAblation = NULL;
|
|---|
| 797 | G4Evaporation * theEvaporation = new G4Evaporation;
|
|---|
| 798 | G4FermiBreakUp * theFermiBreakUp = new G4FermiBreakUp;
|
|---|
| 799 | G4StatMF * theMF = new G4StatMF;
|
|---|
| 800 | theExcitationHandler->SetEvaporation(theEvaporation);
|
|---|
| 801 | theExcitationHandler->SetFermiModel(theFermiBreakUp);
|
|---|
| 802 | theExcitationHandler->SetMultiFragmentation(theMF);
|
|---|
| 803 | theExcitationHandler->SetMaxAandZForFermiBreakUp(12, 6);
|
|---|
| 804 | theExcitationHandler->SetMinEForMultiFrag(5.0*MeV);
|
|---|
| 805 |
|
|---|
| 806 | theEvaporation = new G4Evaporation;
|
|---|
| 807 | theFermiBreakUp = new G4FermiBreakUp;
|
|---|
| 808 | theExcitationHandlerx->SetEvaporation(theEvaporation);
|
|---|
| 809 | theExcitationHandlerx->SetFermiModel(theFermiBreakUp);
|
|---|
| 810 | theExcitationHandlerx->SetMaxAandZForFermiBreakUp(12, 6);
|
|---|
| 811 | }
|
|---|
| 812 | }
|
|---|
| 813 | return;
|
|---|
| 814 | }
|
|---|
| 815 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 816 | //
|
|---|
| 817 | void G4WilsonAbrasionModel::PrintWelcomeMessage ()
|
|---|
| 818 | {
|
|---|
| 819 | G4cout <<G4endl;
|
|---|
| 820 | G4cout <<" *****************************************************************"
|
|---|
| 821 | <<G4endl;
|
|---|
| 822 | G4cout <<" Nuclear abrasion model for nuclear-nuclear interactions activated"
|
|---|
| 823 | <<G4endl;
|
|---|
| 824 | G4cout <<" (Written by QinetiQ Ltd for the European Space Agency)"
|
|---|
| 825 | <<G4endl;
|
|---|
| 826 | G4cout <<" *****************************************************************"
|
|---|
| 827 | <<G4endl;
|
|---|
| 828 | G4cout << G4endl;
|
|---|
| 829 |
|
|---|
| 830 | return;
|
|---|
| 831 | }
|
|---|
| 832 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 833 | //
|
|---|