source: trunk/source/processes/hadronic/models/abrasion/src/G4WilsonAbrasionModel.cc @ 1071

Last change on this file since 1071 was 819, checked in by garnier, 16 years ago

import all except CVS

File size: 29.1 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer                                           *
4// *                                                                  *
5// * The  Geant4 software  is  copyright of the Copyright Holders  of *
6// * the Geant4 Collaboration.  It is provided  under  the terms  and *
7// * conditions of the Geant4 Software License,  included in the file *
8// * LICENSE and available at  http://cern.ch/geant4/license .  These *
9// * include a list of copyright holders.                             *
10// *                                                                  *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work  make  any representation or  warranty, express or implied, *
14// * regarding  this  software system or assume any liability for its *
15// * use.  Please see the license in the file  LICENSE  and URL above *
16// * for the full disclaimer and the limitation of liability.         *
17// *                                                                  *
18// * This  code  implementation is the result of  the  scientific and *
19// * technical work of the GEANT4 collaboration.                      *
20// *                                                                  *
21// * Parts of this code which have been  developed by QinetiQ Ltd     *
22// * under contract to the European Space Agency (ESA) are the        *
23// * intellectual property of ESA. Rights to use, copy, modify and    *
24// * redistribute this software for general public use are granted    *
25// * in compliance with any licensing, distribution and development   *
26// * policy adopted by the Geant4 Collaboration. This code has been   *
27// * written by QinetiQ Ltd for the European Space Agency, under ESA  *
28// * contract 17191/03/NL/LvH (Aurora Programme).                     *
29// *                                                                  *
30// * By using,  copying,  modifying or  distributing the software (or *
31// * any work based  on the software)  you  agree  to acknowledge its *
32// * use  in  resulting  scientific  publications,  and indicate your *
33// * acceptance of all terms of the Geant4 Software license.          *
34// ********************************************************************
35//
36// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
37//
38// MODULE:              G4WilsonAbrasionModel.cc
39//
40// Version:             B.2
41// Date:                18/01/05
42// Author:              P R Truscott
43// Organisation:        QinetiQ Ltd, UK
44// Customer:            ESA/ESTEC, NOORDWIJK
45// Contract:            17191/03/NL/LvH
46//
47// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
48//
49// CHANGE HISTORY
50// --------------
51//
52// 6 October 2003, P R Truscott, QinetiQ Ltd, UK
53// Created.
54//
55// 15 March 2004, P R Truscott, QinetiQ Ltd, UK
56// Beta release
57//
58// 18 January 2005, M H Mendenhall, Vanderbilt University, US
59// Pointers to theAbrasionGeometry and products generated by the deexcitation
60// handler deleted to prevent memory leaks.  Also particle change of projectile
61// fragment previously not properly defined.
62//
63// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
64////////////////////////////////////////////////////////////////////////////////
65//
66#include "G4WilsonAbrasionModel.hh"
67#include "G4WilsonRadius.hh"
68#include "G4NuclearAbrasionGeometry.hh"
69#include "G4WilsonAblationModel.hh"
70
71#include "G4ExcitationHandler.hh"
72#include "G4Evaporation.hh"
73#include "G4FermiBreakUp.hh"
74#include "G4StatMF.hh"
75#include "G4ParticleDefinition.hh"
76#include "G4DynamicParticle.hh"
77#include "Randomize.hh"
78#include "G4Fragment.hh"
79#include "G4VNuclearDensity.hh"
80#include "G4NuclearShellModelDensity.hh"
81#include "G4NuclearFermiDensity.hh"
82#include "G4FermiMomentum.hh"
83#include "G4ReactionProductVector.hh"
84#include "G4LorentzVector.hh"
85#include "G4ParticleMomentum.hh"
86#include "G4Poisson.hh"
87#include "G4ParticleTable.hh"
88#include "G4IonTable.hh"
89#include "globals.hh"
90////////////////////////////////////////////////////////////////////////////////
91//
92G4WilsonAbrasionModel::G4WilsonAbrasionModel (G4bool useAblation1)
93  :G4HadronicInteraction("G4WilsonAbrasion")
94{
95//
96//
97// Send message to stdout to advise that the G4Abrasion model is being used.
98//
99  PrintWelcomeMessage();
100//
101//
102// Set the default verbose level to 0 - no output.
103//
104  verboseLevel = 0;
105  useAblation  = useAblation1;
106//
107//
108// No de-excitation handler has been supplied - define the default handler.
109//
110  theExcitationHandler  = new G4ExcitationHandler;
111  theExcitationHandlerx = new G4ExcitationHandler;
112  if (useAblation)
113  {
114    theAblation = new G4WilsonAblationModel;
115    theAblation->SetVerboseLevel(verboseLevel);
116    theExcitationHandler->SetEvaporation(theAblation);
117    theExcitationHandlerx->SetEvaporation(theAblation);
118  }
119  else
120  {
121    theAblation                      = NULL;
122    G4Evaporation * theEvaporation   = new G4Evaporation;
123    G4FermiBreakUp * theFermiBreakUp = new G4FermiBreakUp;
124    G4StatMF * theMF                 = new G4StatMF;
125    theExcitationHandler->SetEvaporation(theEvaporation);
126    theExcitationHandler->SetFermiModel(theFermiBreakUp);
127    theExcitationHandler->SetMultiFragmentation(theMF);
128    theExcitationHandler->SetMaxAandZForFermiBreakUp(12, 6);
129    theExcitationHandler->SetMinEForMultiFrag(5.0*MeV);
130
131    theEvaporation  = new G4Evaporation;
132    theFermiBreakUp = new G4FermiBreakUp;
133    theExcitationHandlerx->SetEvaporation(theEvaporation);
134    theExcitationHandlerx->SetFermiModel(theFermiBreakUp);
135    theExcitationHandlerx->SetMaxAandZForFermiBreakUp(12, 6);
136  }
137//
138//
139// Set the minimum and maximum range for the model (despite nomanclature, this
140// is in energy per nucleon number). 
141//
142  SetMinEnergy(70.0*MeV);
143  SetMaxEnergy(10.1*GeV);
144  isBlocked = false;
145//
146//
147// npK, when mutiplied by the nuclear Fermi momentum, determines the range of
148// momentum over which the secondary nucleon momentum is sampled.
149//
150  npK              = 5.0;
151  B                = 10.0 * MeV;
152  third            = 1.0 / 3.0;
153  conserveEnergy   = false;
154  conserveMomentum = true;
155}
156////////////////////////////////////////////////////////////////////////////////
157//
158G4WilsonAbrasionModel::G4WilsonAbrasionModel (G4ExcitationHandler *aExcitationHandler)
159{
160//
161//
162// Send message to stdout to advise that the G4Abrasion model is being used.
163//
164  PrintWelcomeMessage();
165//
166//
167// Set the default verbose level to 0 - no output.
168//
169  verboseLevel = 0;
170//                     
171//
172// The user is able to provide the excitation handler as well as an argument
173// which is provided in this instantiation is used to determine
174// whether the spectators of the interaction are free following the abrasion.
175//
176  theExcitationHandler             = aExcitationHandler;
177  theExcitationHandlerx            = new G4ExcitationHandler;
178  G4Evaporation * theEvaporation   = new G4Evaporation;
179  G4FermiBreakUp * theFermiBreakUp = new G4FermiBreakUp;
180  theExcitationHandlerx->SetEvaporation(theEvaporation);
181  theExcitationHandlerx->SetFermiModel(theFermiBreakUp);
182  theExcitationHandlerx->SetMaxAandZForFermiBreakUp(12, 6);
183//
184//
185// Set the minimum and maximum range for the model (despite nomanclature, this
186// is in energy per nucleon number). 
187//
188  SetMinEnergy(70.0*MeV);
189  SetMaxEnergy(10.1*GeV);
190  isBlocked = false;
191//
192//
193// npK, when mutiplied by the nuclear Fermi momentum, determines the range of
194// momentum over which the secondary nucleon momentum is sampled.
195//
196  npK              = 5.0;
197  B                = 10.0 * MeV;
198  third            = 1.0 / 3.0;
199  conserveEnergy   = false;
200  conserveMomentum = true;
201}
202////////////////////////////////////////////////////////////////////////////////
203//
204G4WilsonAbrasionModel::~G4WilsonAbrasionModel ()
205{
206//
207//
208// The destructor doesn't have to do a great deal!
209//
210  delete theExcitationHandler;
211  delete theExcitationHandlerx;
212}
213////////////////////////////////////////////////////////////////////////////////
214//
215G4HadFinalState *G4WilsonAbrasionModel::ApplyYourself (
216  const G4HadProjectile &theTrack, G4Nucleus &theTarget)
217{
218//
219//
220// The secondaries will be returned in G4HadFinalState &theParticleChange -
221// initialise this.  The original track will always be discontinued and
222// secondaries followed.
223//
224  theParticleChange.Clear();
225  theParticleChange.SetStatusChange(stopAndKill);
226//
227//
228// Get relevant information about the projectile and target (A, Z, energy/nuc,
229// momentum, etc).
230//
231  const G4ParticleDefinition *definitionP = theTrack.GetDefinition();
232  const G4double AP   = definitionP->GetBaryonNumber();
233  const G4double ZP   = definitionP->GetPDGCharge();
234  G4LorentzVector pP  = theTrack.Get4Momentum();
235  G4double E          = theTrack.GetKineticEnergy()/AP;
236  G4double AT         = theTarget.GetN();
237  G4double ZT         = theTarget.GetZ();
238  G4double TotalEPre  = theTrack.GetTotalEnergy() +
239    theTarget.AtomicMass(AT, ZT) + theTarget.GetEnergyDeposit();
240  G4double TotalEPost = 0.0;
241//
242//
243// Determine the radii of the projectile and target nuclei.
244//
245  G4WilsonRadius aR;
246  G4double rP   = aR.GetWilsonRadius(AP);
247  G4double rT   = aR.GetWilsonRadius(AT);
248  G4double rPsq = rP * rP;
249  G4double rTsq = rT * rT;
250  if (verboseLevel >= 2)
251  {
252    G4cout <<"########################################"
253           <<"########################################"
254           <<G4endl;
255    G4cout.precision(6);
256    G4cout <<"IN G4WilsonAbrasionModel" <<G4endl;
257    G4cout <<"Initial projectile A=" <<AP
258           <<", Z=" <<ZP
259           <<", radius = " <<rP/fermi <<" fm"
260           <<G4endl; 
261    G4cout <<"Initial target     A=" <<AT
262           <<", Z=" <<ZT
263           <<", radius = " <<rT/fermi <<" fm"
264           <<G4endl;
265    G4cout <<"Projectile momentum and Energy/nuc = " <<pP <<" ," <<E <<G4endl;
266  }
267//
268//
269// The following variables are used to determine the impact parameter in the
270// near-field (i.e. taking into consideration the electrostatic repulsion).
271//
272  G4double rm   = ZP * ZT * elm_coupling / (E * AP);
273  G4double r    = 0.0;
274  G4double rsq  = 0.0;
275//
276//
277// Initialise some of the variables which wll be used to calculate the chord-
278// length for nucleons in the projectile and target, and hence calculate the
279// number of abraded nucleons and the excitation energy.
280//
281  G4NuclearAbrasionGeometry *theAbrasionGeometry = NULL;
282  G4double CT   = 0.0;
283  G4double F    = 0.0;
284  G4int Dabr    = 0;
285//
286//
287// The following loop is performed until the number of nucleons which are
288// abraded by the process is >1, i.e. an interaction MUST occur.
289//
290  while (Dabr == 0)
291  {
292// Added by MHM 20050119 to fix leaking memory on second pass through this loop
293    if (theAbrasionGeometry)
294    {
295      delete theAbrasionGeometry;
296      theAbrasionGeometry = NULL;
297    }
298//
299//
300// Sample the impact parameter.  For the moment, this class takes account of
301// electrostatic effects on the impact parameter, but (like HZETRN AND NUCFRG2)
302// does not make any correction for the effects of nuclear-nuclear repulsion.
303//
304    G4double rPT   = rP + rT;
305    G4double rPTsq = rPT * rPT;
306    r              = 1.1 * rPT;
307    while (r > rPT)
308    {
309      G4double bsq = rPTsq * G4UniformRand();
310      r            = (rm + std::sqrt(rm*rm + 4.0*bsq)) / 2.0;
311    }
312    rsq = r * r;
313//
314//
315// Now determine the chord-length through the target nucleus.
316//
317    if (rT > rP)
318    {
319      G4double x = (rPsq + rsq - rTsq) / 2.0 / r;
320      if (x > 0.0) CT = 2.0 * std::sqrt(rTsq - x*x);
321      else         CT = 2.0 * std::sqrt(rTsq - rsq);
322    }
323    else
324    {
325      G4double x = (rTsq + rsq - rPsq) / 2.0 / r;
326      if (x > 0.0) CT = 2.0 * std::sqrt(rTsq - x*x);
327      else         CT = 2.0 * rT;
328    }
329//
330//
331// Determine the number of abraded nucleons.  Note that the mean number of
332// abraded nucleons is used to sample the Poisson distribution.  The Poisson
333// distribution is sampled only ten times with the current impact parameter,
334// and if it fails after this to find a case for which the number of abraded
335// nucleons >1, the impact parameter is re-sampled.
336//
337    theAbrasionGeometry = new G4NuclearAbrasionGeometry(AP,AT,r);
338    F                   = theAbrasionGeometry->F();
339    G4double lambda     = 16.6*fermi / std::pow(E/MeV,0.26);
340    G4double Mabr       = F * AP * (1.0 - std::exp(-CT/lambda));
341    G4long n            = 0;
342    for (G4int i = 0; i<10; i++)
343    {
344      n = G4Poisson(Mabr);
345      if (n > 0)
346      {
347        if (n>AP) Dabr = (G4int) AP;
348        else      Dabr = (G4int) n;
349        break;
350      }
351    }
352  }
353  if (verboseLevel >= 2)
354  {
355    G4cout <<G4endl;
356    G4cout <<"Impact parameter    = " <<r/fermi <<" fm" <<G4endl;
357    G4cout <<"# Abraded nucleons  = " <<Dabr <<G4endl;
358  }
359//
360//
361// The number of abraded nucleons must be no greater than the number of
362// nucleons in either the projectile or the target.  If AP - Dabr < 2 or
363// AT - Dabr < 2 then either we have only a nucleon left behind in the
364// projectile/target or we've tried to abrade too many nucleons - and Dabr
365// should be limited.
366//
367  if (AP - (G4double) Dabr < 2.0) Dabr = (G4int) AP;
368  if (AT - (G4double) Dabr < 2.0) Dabr = (G4int) AT;
369//
370//
371// Determine the abraded secondary nucleons from the projectile.  *fragmentP
372// is a pointer to the prefragment from the projectile and nSecP is the number
373// of nucleons in theParticleChange which have been abraded.  The total energy
374// from these is determined.
375//
376  G4ThreeVector boost   = pP.findBoostToCM();
377  G4Fragment *fragmentP = GetAbradedNucleons (Dabr, AP, ZP, rP); 
378  G4int nSecP           = theParticleChange.GetNumberOfSecondaries();
379  G4int i               = 0;
380  for (i=0; i<nSecP; i++)
381  {
382    TotalEPost += theParticleChange.GetSecondary(i)->
383      GetParticle()->GetTotalEnergy();
384  }
385//
386//
387// Determine the number of spectators in the interaction region for the
388// projectile.
389//
390  G4int DspcP = (G4int) (AP*F) - Dabr;
391  if (DspcP <= 0)           DspcP = 0;
392  else if (DspcP > AP-Dabr) DspcP = ((G4int) AP) - Dabr;
393//
394//
395// Determine excitation energy associated with excess surface area of the
396// projectile (EsP) and the excitation due to scattering of nucleons which are
397// retained within the projectile (ExP).  Add the total energy from the excited
398// nucleus to the total energy of the secondaries.
399//
400  G4bool excitationAbsorbedByProjectile = false;
401  if (fragmentP != NULL)
402  {
403    G4double EsP = theAbrasionGeometry->GetExcitationEnergyOfProjectile();
404    G4double ExP = 0.0;
405    if (Dabr < AT)
406      excitationAbsorbedByProjectile = G4UniformRand() < 0.5;
407    if (excitationAbsorbedByProjectile)
408      ExP = GetNucleonInducedExcitation(rP, rT, r);
409    G4double xP = EsP + ExP;
410    if (xP > B*(AP-Dabr)) xP = B*(AP-Dabr);
411    G4LorentzVector lorentzVector = fragmentP->GetMomentum();
412    lorentzVector.setE(lorentzVector.e()+xP);
413    fragmentP->SetMomentum(lorentzVector);
414    TotalEPost += lorentzVector.e();
415  }
416  G4double EMassP = TotalEPost;
417//
418//
419// Determine the abraded secondary nucleons from the target.  Note that it's
420// assumed that the same number of nucleons are abraded from the target as for
421// the projectile, and obviously no boost is applied to the products. *fragmentT
422// is a pointer to the prefragment from the target and nSec is the total number
423// of nucleons in theParticleChange which have been abraded.  The total energy
424// from these is determined.
425//
426  G4Fragment *fragmentT = GetAbradedNucleons (Dabr, AT, ZT, rT); 
427  G4int nSec = theParticleChange.GetNumberOfSecondaries();
428  for (i=nSecP; i<nSec; i++)
429  {
430    TotalEPost += theParticleChange.GetSecondary(i)->
431      GetParticle()->GetTotalEnergy();
432  }
433//
434//
435// Determine the number of spectators in the interaction region for the
436// target.
437//
438  G4int DspcT = (G4int) (AT*F) - Dabr;
439  if (DspcT <= 0)           DspcT = 0;
440  else if (DspcT > AP-Dabr) DspcT = ((G4int) AT) - Dabr;
441//
442//
443// Determine excitation energy associated with excess surface area of the
444// target (EsT) and the excitation due to scattering of nucleons which are
445// retained within the target (ExT).  Add the total energy from the excited
446// nucleus to the total energy of the secondaries.
447//
448  if (fragmentT != NULL)
449  {
450    G4double EsT = theAbrasionGeometry->GetExcitationEnergyOfTarget();
451    G4double ExT = 0.0;
452    if (!excitationAbsorbedByProjectile)
453      ExT = GetNucleonInducedExcitation(rT, rP, r);
454    G4double xT = EsT + ExT;
455    if (xT > B*(AT-Dabr)) xT = B*(AT-Dabr);
456    G4LorentzVector lorentzVector = fragmentT->GetMomentum();
457    lorentzVector.setE(lorentzVector.e()+xT);
458    fragmentT->SetMomentum(lorentzVector);
459    TotalEPost += lorentzVector.e();
460  }
461//
462//
463// Now determine the difference between the pre and post interaction
464// energy - this will be used to determine the Lorentz boost if conservation
465// of energy is to be imposed/attempted.
466//
467  G4double deltaE = TotalEPre - TotalEPost;
468  if (deltaE > 0.0 && conserveEnergy)
469  {
470    G4double beta = std::sqrt(1.0 - EMassP*EMassP/std::pow(deltaE+EMassP,2.0));
471    boost = boost / boost.mag() * beta;
472  }
473//
474//
475// Now boost the secondaries from the projectile.
476//
477  G4ThreeVector pBalance = pP.vect();
478  for (i=0; i<nSecP; i++)
479  {
480    G4DynamicParticle *dynamicP = theParticleChange.GetSecondary(i)->
481      GetParticle();
482    G4LorentzVector lorentzVector = dynamicP->Get4Momentum();
483    lorentzVector.boost(-boost);
484    dynamicP->Set4Momentum(lorentzVector);
485    pBalance -= lorentzVector.vect();
486  }
487//
488//
489// Set the boost for the projectile prefragment.  This is now based on the
490// conservation of momentum.  However, if the user selected momentum of the
491// prefragment is not to be conserved this simply boosted to the velocity of the
492// original projectile times the ratio of the unexcited to the excited mass
493// of the prefragment (the excitation increases the effective mass of the
494// prefragment, and therefore modifying the boost is an attempt to prevent
495// the momentum of the prefragment being excessive).
496//
497  if (fragmentP != NULL)
498  {
499    G4LorentzVector lorentzVector = fragmentP->GetMomentum();
500    G4double m                    = lorentzVector.m();
501    if (conserveMomentum)
502      fragmentP->SetMomentum
503        (G4LorentzVector(pBalance,std::sqrt(pBalance.mag2()+m*m+1.0*eV*eV)));
504    else
505    {
506      G4double mg = fragmentP->GetGroundStateMass();
507      fragmentP->SetMomentum(lorentzVector.boost(-boost * mg/m));
508    }
509  }
510//
511//
512// Output information to user if verbose information requested.
513//
514  if (verboseLevel >= 2)
515  {
516    G4cout <<G4endl;
517    G4cout <<"-----------------------------------" <<G4endl;
518    G4cout <<"Secondary nucleons from projectile:" <<G4endl;
519    G4cout <<"-----------------------------------" <<G4endl;
520    G4cout.precision(7);
521    for (i=0; i<nSecP; i++)
522    {
523      G4cout <<"Particle # " <<i <<G4endl;
524      theParticleChange.GetSecondary(i)->GetParticle()->DumpInfo();
525      G4DynamicParticle *dyn = theParticleChange.GetSecondary(i)->GetParticle();
526      G4cout <<"New nucleon (P) " <<dyn->GetDefinition()->GetParticleName()
527             <<" : "              <<dyn->Get4Momentum()
528             <<G4endl;
529    }
530    G4cout <<"---------------------------" <<G4endl;
531    G4cout <<"The projectile prefragment:" <<G4endl;
532    G4cout <<"---------------------------" <<G4endl;
533    if (fragmentP != NULL)
534      G4cout <<*fragmentP <<G4endl;
535    else
536      G4cout <<"(No residual prefragment)" <<G4endl;
537    G4cout <<G4endl;
538    G4cout <<"-------------------------------" <<G4endl;
539    G4cout <<"Secondary nucleons from target:" <<G4endl;
540    G4cout <<"-------------------------------" <<G4endl;
541    G4cout.precision(7);
542    for (i=nSecP; i<nSec; i++)
543    {
544      G4cout <<"Particle # " <<i <<G4endl;
545      theParticleChange.GetSecondary(i)->GetParticle()->DumpInfo();
546      G4DynamicParticle *dyn = theParticleChange.GetSecondary(i)->GetParticle();
547      G4cout <<"New nucleon (T) " <<dyn->GetDefinition()->GetParticleName()
548             <<" : "              <<dyn->Get4Momentum()
549             <<G4endl;
550    }
551    G4cout <<"-----------------------" <<G4endl;
552    G4cout <<"The target prefragment:" <<G4endl;
553    G4cout <<"-----------------------" <<G4endl;
554    if (fragmentT != NULL)
555      G4cout <<*fragmentT <<G4endl;
556    else
557      G4cout <<"(No residual prefragment)" <<G4endl;
558  }
559//
560//
561// Now we can decay the nuclear fragments if present.  The secondaries are
562// collected and boosted as well.  This is performed first for the projectile...
563//
564  if (fragmentP !=NULL)
565  {
566    G4ReactionProductVector *products = NULL;
567    if (fragmentP->GetZ() != fragmentP->GetA())
568      products = theExcitationHandler->BreakItUp(*fragmentP);
569    else
570      products = theExcitationHandlerx->BreakItUp(*fragmentP);     
571    delete fragmentP;
572    fragmentP = NULL;
573 
574    G4ReactionProductVector::iterator iter;
575    for (iter = products->begin(); iter != products->end(); ++iter)
576    {
577      G4DynamicParticle *secondary =
578        new G4DynamicParticle((*iter)->GetDefinition(),
579        (*iter)->GetTotalEnergy(), (*iter)->GetMomentum());
580      theParticleChange.AddSecondary (secondary);  // Added MHM 20050118
581      G4String particleName = (*iter)->GetDefinition()->GetParticleName();
582      delete (*iter); // get rid of leftover particle def!  // Added MHM 20050118
583      if (verboseLevel >= 2 && particleName.find("[",0) < particleName.size())
584      {
585        G4cout <<"------------------------" <<G4endl;
586        G4cout <<"The projectile fragment:" <<G4endl;
587        G4cout <<"------------------------" <<G4endl;
588        G4cout <<" fragmentP = " <<particleName
589               <<" Energy    = " <<secondary->GetKineticEnergy()
590               <<G4endl;
591      }
592    }
593    delete products;  // Added MHM 20050118
594  }
595//
596//
597// Now decay the target nucleus - no boost is applied since in this
598// approximation it is assumed that there is negligible momentum transfer from
599// the projectile.
600//
601  if (fragmentT != NULL)
602  {
603    G4ReactionProductVector *products = NULL;
604    if (fragmentT->GetZ() != fragmentT->GetA())
605      products = theExcitationHandler->BreakItUp(*fragmentT);
606    else
607      products = theExcitationHandlerx->BreakItUp(*fragmentT);     
608    delete fragmentT;
609    fragmentT = NULL;
610 
611    G4ReactionProductVector::iterator iter;
612    for (iter = products->begin(); iter != products->end(); ++iter)
613    {
614      G4DynamicParticle *secondary =
615        new G4DynamicParticle((*iter)->GetDefinition(),
616        (*iter)->GetTotalEnergy(), (*iter)->GetMomentum());
617      theParticleChange.AddSecondary (secondary);
618      G4String particleName = (*iter)->GetDefinition()->GetParticleName();
619      delete (*iter); // get rid of leftover particle def!  // Added MHM 20050118
620      if (verboseLevel >= 2 && particleName.find("[",0) < particleName.size())
621      {
622        G4cout <<"--------------------" <<G4endl;
623        G4cout <<"The target fragment:" <<G4endl;
624        G4cout <<"--------------------" <<G4endl;
625        G4cout <<" fragmentT = " <<particleName
626               <<" Energy    = " <<secondary->GetKineticEnergy()
627               <<G4endl;
628      }
629    }
630    delete products;  // Added MHM 20050118
631  }
632
633  if (verboseLevel >= 2)
634     G4cout <<"########################################"
635            <<"########################################"
636            <<G4endl;
637 
638  delete theAbrasionGeometry;
639 
640  return &theParticleChange;
641}
642////////////////////////////////////////////////////////////////////////////////
643//
644G4Fragment *G4WilsonAbrasionModel::GetAbradedNucleons (G4int Dabr, G4double A,
645  G4double Z, G4double r)
646{
647//
648//
649// Initialise variables.  tau is the Fermi radius of the nucleus.  The variables
650// p..., C... and g(amma) are used to help sample the secondary nucleon
651// spectrum.
652//
653 
654  G4double pK   = hbarc * std::pow(9.0 * pi / 4.0 * A, third) / (1.29 * r);
655  if (A <= 24.0) pK *= -0.229*std::pow(A,third) + 1.62; 
656  G4double pKsq = pK * pK;
657  G4double p1sq = 2.0/5.0 * pKsq;
658  G4double p2sq = 6.0/5.0 * pKsq;
659  G4double p3sq = 500.0 * 500.0;
660  G4double C1   = 1.0;
661  G4double C2   = 0.03;
662  G4double C3   = 0.0002;
663  G4double g    = 90.0 * MeV;
664  G4double maxn = C1 + C2 + C3;
665//
666//
667// initialise the number of secondary nucleons abraded to zero, and initially set
668// the type of nucleon abraded to proton ... just for now.
669// 
670  G4double Aabr                     = 0.0;
671  G4double Zabr                     = 0.0; 
672  G4ParticleDefinition *typeNucleon = G4Proton::ProtonDefinition();
673  G4DynamicParticle *dynamicNucleon = NULL;
674  G4ParticleMomentum pabr(0.0, 0.0, 0.0);
675//
676//
677// Now go through each abraded nucleon and sample type, spectrum and angle.
678//
679  for (G4int i=0; i<Dabr; i++)
680  {
681//
682//
683// Sample the nucleon momentum distribution by simple rejection techniques.  We
684// reject values of p == 0.0 since this causes bad behaviour in the sinh term.
685//
686    G4double p   = 0.0;
687    G4bool found = false;
688    while (!found)
689    {
690      while (p <= 0.0) p = npK * pK * G4UniformRand();
691      G4double psq = p * p;
692      found = maxn * G4UniformRand() < C1*std::exp(-psq/p1sq/2.0) +
693        C2*std::exp(-psq/p2sq/2.0) + C3*std::exp(-psq/p3sq/2.0) + p/g/std::sinh(p/g);
694    }
695//
696//
697// Determine the type of particle abraded.  Can only be proton or neutron,
698// and the probability is determine to be proportional to the ratio as found
699// in the nucleus at each stage.
700//
701    G4double prob = (Z-Zabr)/(A-Aabr);
702    if (G4UniformRand()<prob)
703    {
704      Zabr++;
705      typeNucleon = G4Proton::ProtonDefinition();
706    }
707    else
708      typeNucleon = G4Neutron::NeutronDefinition();
709    Aabr++;
710//
711//
712// The angular distribution of the secondary nucleons is approximated to an
713// isotropic distribution in the rest frame of the nucleus (this will be Lorentz
714// boosted later.
715//
716    G4double costheta = 2.*G4UniformRand()-1.0;
717    G4double sintheta = std::sqrt((1.0 - costheta)*(1.0 + costheta));
718    G4double phi      = 2.0*pi*G4UniformRand()*rad;
719    G4ThreeVector direction(sintheta*std::cos(phi),sintheta*std::sin(phi),costheta);
720    G4double nucleonMass = typeNucleon->GetPDGMass();
721    G4double E           = std::sqrt(p*p + nucleonMass*nucleonMass)-nucleonMass;
722    dynamicNucleon = new G4DynamicParticle(typeNucleon,direction,E);
723    theParticleChange.AddSecondary (dynamicNucleon);
724    pabr += p*direction;
725  }
726//
727//
728// Next determine the details of the nuclear prefragment .. that is if there
729// is one or more protons in the residue.  (Note that the 1 eV in the total
730// energy is a safety factor to avoid any possibility of negative rest mass
731// energy.)
732//
733  G4Fragment *fragment = NULL;
734  if (Z-Zabr>=1.0)
735  {
736    G4double ionMass = G4ParticleTable::GetParticleTable()->GetIonTable()->
737                       GetIonMass(G4lrint(Z-Zabr),G4lrint(A-Aabr));
738    G4double E       = std::sqrt(pabr.mag2() + ionMass*ionMass);
739    G4LorentzVector lorentzVector = G4LorentzVector(-pabr, E + 1.0*eV);
740    fragment =
741      new G4Fragment((G4int) (A-Aabr), (G4int) (Z-Zabr), lorentzVector);
742  }
743
744  return fragment;
745}
746////////////////////////////////////////////////////////////////////////////////
747//
748G4double G4WilsonAbrasionModel::GetNucleonInducedExcitation
749  (G4double rP, G4double rT, G4double r)
750{
751//
752//
753// Initialise variables.
754//
755  G4double Cl   = 0.0;
756  G4double rPsq = rP * rP;
757  G4double rTsq = rT * rT;
758  G4double rsq  = r * r;
759//
760//
761// Depending upon the impact parameter, a different form of the chord length is
762// is used.
763// 
764  if (r > rT) Cl = 2.0*std::sqrt(rPsq + 2.0*r*rT - rsq - rTsq);
765  else        Cl = 2.0*rP;
766 
767  G4double bP = (rPsq+rsq-rTsq)/2.0/r;
768  G4double Ct = 2.0*std::sqrt(rPsq - bP*bP);
769 
770  G4double Ex = 13.0 * Cl / fermi;
771  if (Ct > 1.5*fermi)
772    Ex += 13.0 * Cl / fermi /3.0 * (Ct/fermi - 1.5);
773
774  return Ex;
775}
776////////////////////////////////////////////////////////////////////////////////
777//
778void G4WilsonAbrasionModel::SetUseAblation (G4bool useAblation1)
779{
780  if (useAblation != useAblation1)
781  {
782    useAblation = useAblation1;
783    delete theExcitationHandler;
784    delete theExcitationHandlerx;
785    theExcitationHandler  = new G4ExcitationHandler;
786    theExcitationHandlerx = new G4ExcitationHandler;
787    if (useAblation)
788    {
789      theAblation = new G4WilsonAblationModel;
790      theAblation->SetVerboseLevel(verboseLevel);
791      theExcitationHandler->SetEvaporation(theAblation);
792      theExcitationHandlerx->SetEvaporation(theAblation);
793    }
794    else
795    {
796      theAblation                      = NULL;
797      G4Evaporation * theEvaporation   = new G4Evaporation;
798      G4FermiBreakUp * theFermiBreakUp = new G4FermiBreakUp;
799      G4StatMF * theMF                 = new G4StatMF;
800      theExcitationHandler->SetEvaporation(theEvaporation);
801      theExcitationHandler->SetFermiModel(theFermiBreakUp);
802      theExcitationHandler->SetMultiFragmentation(theMF);
803      theExcitationHandler->SetMaxAandZForFermiBreakUp(12, 6);
804      theExcitationHandler->SetMinEForMultiFrag(5.0*MeV);
805
806      theEvaporation  = new G4Evaporation;
807      theFermiBreakUp = new G4FermiBreakUp;
808      theExcitationHandlerx->SetEvaporation(theEvaporation);
809      theExcitationHandlerx->SetFermiModel(theFermiBreakUp);
810      theExcitationHandlerx->SetMaxAandZForFermiBreakUp(12, 6);
811    }
812  }
813  return; 
814}
815////////////////////////////////////////////////////////////////////////////////
816//
817void G4WilsonAbrasionModel::PrintWelcomeMessage ()
818{
819  G4cout <<G4endl;
820  G4cout <<" *****************************************************************"
821         <<G4endl;
822  G4cout <<" Nuclear abrasion model for nuclear-nuclear interactions activated"
823         <<G4endl;
824  G4cout <<" (Written by QinetiQ Ltd for the European Space Agency)"
825         <<G4endl;
826  G4cout <<" *****************************************************************"
827         <<G4endl;
828  G4cout << G4endl;
829
830  return;
831}
832////////////////////////////////////////////////////////////////////////////////
833//
Note: See TracBrowser for help on using the repository browser.