| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | // G4RKFieldIntegrator
|
|---|
| 27 | #include "G4RKFieldIntegrator.hh"
|
|---|
| 28 | #include "G4NucleiProperties.hh"
|
|---|
| 29 | #include "G4FermiMomentum.hh"
|
|---|
| 30 | #include "G4NuclearFermiDensity.hh"
|
|---|
| 31 | #include "G4NuclearShellModelDensity.hh"
|
|---|
| 32 | #include "G4Nucleon.hh"
|
|---|
| 33 |
|
|---|
| 34 | // Class G4RKFieldIntegrator
|
|---|
| 35 | //*************************************************************************************************************************************
|
|---|
| 36 |
|
|---|
| 37 | // only theActive are propagated, nothing else
|
|---|
| 38 | // only theSpectators define the field, nothing else
|
|---|
| 39 |
|
|---|
| 40 | void G4RKFieldIntegrator::Transport(G4KineticTrackVector &theActive, const G4KineticTrackVector &theSpectators, G4double theTimeStep)
|
|---|
| 41 | {
|
|---|
| 42 | (void)theActive;
|
|---|
| 43 | (void)theSpectators;
|
|---|
| 44 | (void)theTimeStep;
|
|---|
| 45 | }
|
|---|
| 46 |
|
|---|
| 47 |
|
|---|
| 48 | G4double G4RKFieldIntegrator::CalculateTotalEnergy(const G4KineticTrackVector& Barions)
|
|---|
| 49 | {
|
|---|
| 50 | const G4double Alpha = 0.25/fermi/fermi;
|
|---|
| 51 | const G4double t1 = -7264.04*fermi*fermi*fermi;
|
|---|
| 52 | const G4double tGamma = 87.65*fermi*fermi*fermi*fermi*fermi*fermi;
|
|---|
| 53 | // const G4double Gamma = 1.676;
|
|---|
| 54 | const G4double Vo = -0.498*fermi;
|
|---|
| 55 | const G4double GammaY = 1.4*fermi;
|
|---|
| 56 |
|
|---|
| 57 | G4double Etot = 0;
|
|---|
| 58 | G4int nBarion = Barions.size();
|
|---|
| 59 | for(G4int c1 = 0; c1 < nBarion; c1++)
|
|---|
| 60 | {
|
|---|
| 61 | G4KineticTrack* p1 = Barions.operator[](c1);
|
|---|
| 62 | // Ekin
|
|---|
| 63 | Etot += p1->Get4Momentum().e();
|
|---|
| 64 | for(G4int c2 = c1 + 1; c2 < nBarion; c2++)
|
|---|
| 65 | {
|
|---|
| 66 | G4KineticTrack* p2 = Barions.operator[](c2);
|
|---|
| 67 | G4ThreeVector rv = p1->GetPosition() - p2->GetPosition();
|
|---|
| 68 | G4double r12 = std::sqrt(rv*rv)*fermi;
|
|---|
| 69 |
|
|---|
| 70 | // Esk2
|
|---|
| 71 | Etot += t1*std::pow(Alpha/pi, 3/2)*std::exp(-Alpha*r12*r12);
|
|---|
| 72 |
|
|---|
| 73 | // Eyuk
|
|---|
| 74 | Etot += Vo*0.5/r12*std::exp(1/(4*Alpha*GammaY*GammaY))*
|
|---|
| 75 | (std::exp(-r12/GammaY)*(1 - Erf(0.5/GammaY/std::sqrt(Alpha) - std::sqrt(Alpha)*r12)) -
|
|---|
| 76 | std::exp( r12/GammaY)*(1 - Erf(0.5/GammaY/std::sqrt(Alpha) + std::sqrt(Alpha)*r12)));
|
|---|
| 77 |
|
|---|
| 78 | // Ecoul
|
|---|
| 79 | Etot += 1.44*p1->GetDefinition()->GetPDGCharge()*p2->GetDefinition()->GetPDGCharge()/r12*Erf(std::sqrt(Alpha)*r12);
|
|---|
| 80 |
|
|---|
| 81 | // Epaul
|
|---|
| 82 | Etot = 0;
|
|---|
| 83 |
|
|---|
| 84 | for(G4int c3 = c2 + 1; c3 < nBarion; c3++)
|
|---|
| 85 | {
|
|---|
| 86 | G4KineticTrack* p3 = Barions.operator[](c3);
|
|---|
| 87 | G4ThreeVector rv = p1->GetPosition() - p3->GetPosition();
|
|---|
| 88 | G4double r13 = std::sqrt(rv*rv)*fermi;
|
|---|
| 89 |
|
|---|
| 90 | // Esk3
|
|---|
| 91 | Etot = tGamma*std::pow(4*Alpha*Alpha/3/pi/pi, 1.5)*std::exp(-Alpha*(r12*r12 + r13*r13));
|
|---|
| 92 | }
|
|---|
| 93 | }
|
|---|
| 94 | }
|
|---|
| 95 | return Etot;
|
|---|
| 96 | }
|
|---|
| 97 |
|
|---|
| 98 | //************************************************************************************************
|
|---|
| 99 | // originated from the Numerical recipes error function
|
|---|
| 100 | G4double G4RKFieldIntegrator::Erf(G4double X)
|
|---|
| 101 | {
|
|---|
| 102 | const G4double Z1 = 1;
|
|---|
| 103 | const G4double HF = Z1/2;
|
|---|
| 104 | const G4double C1 = 0.56418958;
|
|---|
| 105 |
|
|---|
| 106 | const G4double P10 = +3.6767877;
|
|---|
| 107 | const G4double Q10 = +3.2584593;
|
|---|
| 108 | const G4double P11 = -9.7970465E-2;
|
|---|
| 109 |
|
|---|
| 110 | static G4double P2[5] = { 7.3738883, 6.8650185, 3.0317993, 0.56316962, 4.3187787e-5 };
|
|---|
| 111 | static G4double Q2[5] = { 7.3739609, 15.184908, 12.79553, 5.3542168, 1. };
|
|---|
| 112 |
|
|---|
| 113 | const G4double P30 = -1.2436854E-1;
|
|---|
| 114 | const G4double Q30 = +4.4091706E-1;
|
|---|
| 115 | const G4double P31 = -9.6821036E-2;
|
|---|
| 116 |
|
|---|
| 117 | G4double V = std::abs(X);
|
|---|
| 118 | G4double H;
|
|---|
| 119 | G4double Y;
|
|---|
| 120 | G4int c1;
|
|---|
| 121 |
|
|---|
| 122 | if(V < HF)
|
|---|
| 123 | {
|
|---|
| 124 | Y = V*V;
|
|---|
| 125 | H = X*(P10 + P11*Y)/(Q10+Y);
|
|---|
| 126 | }
|
|---|
| 127 | else
|
|---|
| 128 | {
|
|---|
| 129 | if(V < 4)
|
|---|
| 130 | {
|
|---|
| 131 | G4double AP = P2[4];
|
|---|
| 132 | G4double AQ = Q2[4];
|
|---|
| 133 | for(c1 = 3; c1 >= 0; c1--)
|
|---|
| 134 | {
|
|---|
| 135 | AP = P2[c1] + V*AP;
|
|---|
| 136 | AQ = Q2[c1] + V*AQ;
|
|---|
| 137 | }
|
|---|
| 138 | H = 1 - std::exp(-V*V)*AP/AQ;
|
|---|
| 139 | }
|
|---|
| 140 | else
|
|---|
| 141 | {
|
|---|
| 142 | Y = 1./V*V;
|
|---|
| 143 | H = 1 - std::exp(-V*V)*(C1+Y*(P30 + P31*Y)/(Q30 + Y))/V;
|
|---|
| 144 | }
|
|---|
| 145 | if (X < 0)
|
|---|
| 146 | H =- H;
|
|---|
| 147 | }
|
|---|
| 148 | return H;
|
|---|
| 149 | }
|
|---|
| 150 |
|
|---|
| 151 | //************************************************************************************************
|
|---|
| 152 | //This is a QMD version to calculate excitation energy of a fragment,
|
|---|
| 153 | //which consists from G4KTV &the Particles
|
|---|
| 154 | /*
|
|---|
| 155 | G4double G4RKFieldIntegrator::GetExcitationEnergy(const G4KineticTrackVector &theParticles)
|
|---|
| 156 | {
|
|---|
| 157 | // Excitation energy of a fragment consisting from A nucleons and Z protons
|
|---|
| 158 | // is Etot - Z*Mp - (A - Z)*Mn - B(A, Z), where B(A,Z) is the binding energy of fragment
|
|---|
| 159 | // and Mp, Mn are proton and neutron mass, respectively.
|
|---|
| 160 | G4int NZ = 0;
|
|---|
| 161 | G4int NA = 0;
|
|---|
| 162 | G4double Etot = CalculateTotalEnergy(theParticles);
|
|---|
| 163 | for(G4int cParticle = 0; cParticle < theParticles.length(); cParticle++)
|
|---|
| 164 | {
|
|---|
| 165 | G4KineticTrack* pKineticTrack = theParticles.at(cParticle);
|
|---|
| 166 | G4int Encoding = std::abs(pKineticTrack->GetDefinition()->GetPDGEncoding());
|
|---|
| 167 | if (Encoding == 2212)
|
|---|
| 168 | NZ++, NA++;
|
|---|
| 169 | if (Encoding == 2112)
|
|---|
| 170 | NA++;
|
|---|
| 171 | Etot -= pKineticTrack->GetDefinition()->GetPDGMass();
|
|---|
| 172 | }
|
|---|
| 173 | return Etot - G4NucleiProperties::GetBindingEnergy(NZ, NA);
|
|---|
| 174 | }
|
|---|
| 175 | */
|
|---|
| 176 |
|
|---|
| 177 | //*************************************************************************************************************************************
|
|---|
| 178 | //This is a simplified method to get excitation energy of a residual
|
|---|
| 179 | // nucleus with nHitNucleons.
|
|---|
| 180 | G4double G4RKFieldIntegrator::GetExcitationEnergy(G4int nHitNucleons, const G4KineticTrackVector &)
|
|---|
| 181 | {
|
|---|
| 182 | const G4double MeanE = 50;
|
|---|
| 183 | G4double Sum = 0;
|
|---|
| 184 | for(G4int c1 = 0; c1 < nHitNucleons; c1++)
|
|---|
| 185 | {
|
|---|
| 186 | Sum += -MeanE*std::log(G4UniformRand());
|
|---|
| 187 | }
|
|---|
| 188 | return Sum;
|
|---|
| 189 | }
|
|---|
| 190 | //*************************************************************************************************************************************
|
|---|
| 191 |
|
|---|
| 192 | /*
|
|---|
| 193 | //This is free propagation of particles for CASCADE mode. Target nucleons should be frozen
|
|---|
| 194 | void G4RKFieldIntegrator::Integrate(G4KineticTrackVector& theParticles)
|
|---|
| 195 | {
|
|---|
| 196 | for(G4int cParticle = 0; cParticle < theParticles.length(); cParticle++)
|
|---|
| 197 | {
|
|---|
| 198 | G4KineticTrack* pKineticTrack = theParticles.at(cParticle);
|
|---|
| 199 | pKineticTrack->SetPosition(pKineticTrack->GetPosition() + theTimeStep*pKineticTrack->Get4Momentum().boostVector());
|
|---|
| 200 | }
|
|---|
| 201 | }
|
|---|
| 202 | */
|
|---|
| 203 | //*************************************************************************************************************************************
|
|---|
| 204 |
|
|---|
| 205 | void G4RKFieldIntegrator::Integrate(const G4KineticTrackVector& theBarions, G4double theTimeStep)
|
|---|
| 206 | {
|
|---|
| 207 | for(size_t cParticle = 0; cParticle < theBarions.size(); cParticle++)
|
|---|
| 208 | {
|
|---|
| 209 | G4KineticTrack* pKineticTrack = theBarions[cParticle];
|
|---|
| 210 | pKineticTrack->SetPosition(pKineticTrack->GetPosition() + theTimeStep*pKineticTrack->Get4Momentum().boostVector());
|
|---|
| 211 | }
|
|---|
| 212 | }
|
|---|
| 213 |
|
|---|
| 214 | //*************************************************************************************************************************************
|
|---|
| 215 |
|
|---|
| 216 | // constant to calculate theCoulomb barrier
|
|---|
| 217 | const G4double G4RKFieldIntegrator::coulomb = 1.44 / 1.14 * MeV;
|
|---|
| 218 |
|
|---|
| 219 | // kaon's potential constant (real part only)
|
|---|
| 220 | // 0.35 + i0.82 or 0.63 + i0.89 fermi
|
|---|
| 221 | const G4double G4RKFieldIntegrator::a_kaon = 0.35;
|
|---|
| 222 |
|
|---|
| 223 | // pion's potential constant (real part only)
|
|---|
| 224 | //!! for pions it has todiffer from kaons
|
|---|
| 225 | // 0.35 + i0.82 or 0.63 + i0.89 fermi
|
|---|
| 226 | const G4double G4RKFieldIntegrator::a_pion = 0.35;
|
|---|
| 227 |
|
|---|
| 228 | // antiproton's potential constant (real part only)
|
|---|
| 229 | // 1.53 + i2.50 fermi
|
|---|
| 230 | const G4double G4RKFieldIntegrator::a_antiproton = 1.53;
|
|---|
| 231 |
|
|---|
| 232 | // methods for calculating potentials for different types of particles
|
|---|
| 233 | // aPosition is relative to the nucleus center
|
|---|
| 234 | G4double G4RKFieldIntegrator::GetNeutronPotential(G4double )
|
|---|
| 235 | {
|
|---|
| 236 | /*
|
|---|
| 237 | const G4double Mn = 939.56563 * MeV; // mass of nuetron
|
|---|
| 238 |
|
|---|
| 239 | G4VNuclearDensity *theDencity;
|
|---|
| 240 | if(theA < 17) theDencity = new G4NuclearShellModelDensity(theA, theZ);
|
|---|
| 241 | else theDencity = new G4NuclearFermiDensity(theA, theZ);
|
|---|
| 242 |
|
|---|
| 243 | // GetDencity() accepts only G4ThreeVector so build it:
|
|---|
| 244 | G4ThreeVector aPosition(0.0, 0.0, radius);
|
|---|
| 245 | G4double density = theDencity->GetDensity(aPosition);
|
|---|
| 246 | delete theDencity;
|
|---|
| 247 |
|
|---|
| 248 | G4FermiMomentum *fm = new G4FermiMomentum();
|
|---|
| 249 | fm->Init(theA, theZ);
|
|---|
| 250 | G4double fermiMomentum = fm->GetFermiMomentum(density);
|
|---|
| 251 | delete fm;
|
|---|
| 252 |
|
|---|
| 253 | return sqr(fermiMomentum)/(2 * Mn)
|
|---|
| 254 | + G4CreateNucleus::GetBindingEnergy(theZ, theA)/theA;
|
|---|
| 255 | //+ G4NucleiProperties::GetBindingEnergy(theZ, theA)/theA;
|
|---|
| 256 | */
|
|---|
| 257 |
|
|---|
| 258 | return 0.0;
|
|---|
| 259 | }
|
|---|
| 260 |
|
|---|
| 261 | G4double G4RKFieldIntegrator::GetProtonPotential(G4double )
|
|---|
| 262 | {
|
|---|
| 263 | /*
|
|---|
| 264 | // calculate Coulomb barrier value
|
|---|
| 265 | G4double theCoulombBarrier = coulomb * theZ/(1. + std::pow(theA, 1./3.));
|
|---|
| 266 | const G4double Mp = 938.27231 * MeV; // mass of proton
|
|---|
| 267 |
|
|---|
| 268 | G4VNuclearDensity *theDencity;
|
|---|
| 269 | if(theA < 17) theDencity = new G4NuclearShellModelDensity(theA, theZ);
|
|---|
| 270 | else theDencity = new G4NuclearFermiDensity(theA, theZ);
|
|---|
| 271 |
|
|---|
| 272 | // GetDencity() accepts only G4ThreeVector so build it:
|
|---|
| 273 | G4ThreeVector aPosition(0.0, 0.0, radius);
|
|---|
| 274 | G4double density = theDencity->GetDensity(aPosition);
|
|---|
| 275 | delete theDencity;
|
|---|
| 276 |
|
|---|
| 277 | G4FermiMomentum *fm = new G4FermiMomentum();
|
|---|
| 278 | fm->Init(theA, theZ);
|
|---|
| 279 | G4double fermiMomentum = fm->GetFermiMomentum(density);
|
|---|
| 280 | delete fm;
|
|---|
| 281 |
|
|---|
| 282 | return sqr(fermiMomentum)/ (2 * Mp)
|
|---|
| 283 | + G4CreateNucleus::GetBindingEnergy(theZ, theA)/theA;
|
|---|
| 284 | //+ G4NucleiProperties::GetBindingEnergy(theZ, theA)/theA
|
|---|
| 285 | + theCoulombBarrier;
|
|---|
| 286 | */
|
|---|
| 287 |
|
|---|
| 288 | return 0.0;
|
|---|
| 289 | }
|
|---|
| 290 |
|
|---|
| 291 | G4double G4RKFieldIntegrator::GetAntiprotonPotential(G4double )
|
|---|
| 292 | {
|
|---|
| 293 | /*
|
|---|
| 294 | //G4double theM = G4NucleiProperties::GetAtomicMass(theA, theZ);
|
|---|
| 295 | G4double theM = theZ * G4Proton::Proton()->GetPDGMass()
|
|---|
| 296 | + (theA - theZ) * G4Neutron::Neutron()->GetPDGMass()
|
|---|
| 297 | + G4CreateNucleus::GetBindingEnergy(theZ, theA);
|
|---|
| 298 |
|
|---|
| 299 | const G4double Mp = 938.27231 * MeV; // mass of proton
|
|---|
| 300 | G4double mu = (theM * Mp)/(theM + Mp);
|
|---|
| 301 |
|
|---|
| 302 | // antiproton's potential coefficient
|
|---|
| 303 | // V = coeff_antiproton * nucleus_density
|
|---|
| 304 | G4double coeff_antiproton = -2.*pi/mu * (1. + Mp) * a_antiproton;
|
|---|
| 305 |
|
|---|
| 306 | G4VNuclearDensity *theDencity;
|
|---|
| 307 | if(theA < 17) theDencity = new G4NuclearShellModelDensity(theA, theZ);
|
|---|
| 308 | else theDencity = new G4NuclearFermiDensity(theA, theZ);
|
|---|
| 309 |
|
|---|
| 310 | // GetDencity() accepts only G4ThreeVector so build it:
|
|---|
| 311 | G4ThreeVector aPosition(0.0, 0.0, radius);
|
|---|
| 312 | G4double density = theDencity->GetDensity(aPosition);
|
|---|
| 313 | delete theDencity;
|
|---|
| 314 |
|
|---|
| 315 | return coeff_antiproton * density;
|
|---|
| 316 | */
|
|---|
| 317 |
|
|---|
| 318 | return 0.0;
|
|---|
| 319 | }
|
|---|
| 320 |
|
|---|
| 321 | G4double G4RKFieldIntegrator::GetKaonPotential(G4double )
|
|---|
| 322 | {
|
|---|
| 323 | /*
|
|---|
| 324 | //G4double theM = G4NucleiProperties::GetAtomicMass(theA, theZ);
|
|---|
| 325 | G4double theM = theZ * G4Proton::Proton()->GetPDGMass()
|
|---|
| 326 | + (theA - theZ) * G4Neutron::Neutron()->GetPDGMass()
|
|---|
| 327 | + G4CreateNucleus::GetBindingEnergy(theZ, theA);
|
|---|
| 328 |
|
|---|
| 329 | const G4double Mk = 496. * MeV; // mass of "kaon"
|
|---|
| 330 | G4double mu = (theM * Mk)/(theM + Mk);
|
|---|
| 331 |
|
|---|
| 332 | // kaon's potential coefficient
|
|---|
| 333 | // V = coeff_kaon * nucleus_density
|
|---|
| 334 | G4double coeff_kaon = -2.*pi/mu * (1. + Mk/theM) * a_kaon;
|
|---|
| 335 |
|
|---|
| 336 | G4VNuclearDensity *theDencity;
|
|---|
| 337 | if(theA < 17) theDencity = new G4NuclearShellModelDensity(theA, theZ);
|
|---|
| 338 | else theDencity = new G4NuclearFermiDensity(theA, theZ);
|
|---|
| 339 |
|
|---|
| 340 | // GetDencity() accepts only G4ThreeVector so build it:
|
|---|
| 341 | G4ThreeVector aPosition(0.0, 0.0, radius);
|
|---|
| 342 | G4double density = theDencity->GetDensity(aPosition);
|
|---|
| 343 | delete theDencity;
|
|---|
| 344 |
|
|---|
| 345 | return coeff_kaon * density;
|
|---|
| 346 | */
|
|---|
| 347 |
|
|---|
| 348 | return 0.0;
|
|---|
| 349 | }
|
|---|
| 350 |
|
|---|
| 351 | G4double G4RKFieldIntegrator::GetPionPotential(G4double )
|
|---|
| 352 | {
|
|---|
| 353 | /*
|
|---|
| 354 | //G4double theM = G4NucleiProperties::GetAtomicMass(theA, theZ);
|
|---|
| 355 | G4double theM = theZ * G4Proton::Proton()->GetPDGMass()
|
|---|
| 356 | + (theA - theZ) * G4Neutron::Neutron()->GetPDGMass()
|
|---|
| 357 | + G4CreateNucleus::GetBindingEnergy(theZ, theA);
|
|---|
| 358 |
|
|---|
| 359 | const G4double Mpi = 139. * MeV; // mass of "pion"
|
|---|
| 360 | G4double mu = (theM * Mpi)/(theM + Mpi);
|
|---|
| 361 |
|
|---|
| 362 | // pion's potential coefficient
|
|---|
| 363 | // V = coeff_pion * nucleus_density
|
|---|
| 364 | G4double coeff_pion = -2.*pi/mu * (1. + Mpi) * a_pion;
|
|---|
| 365 |
|
|---|
| 366 | G4VNuclearDensity *theDencity;
|
|---|
| 367 | if(theA < 17) theDencity = new G4NuclearShellModelDensity(theA, theZ);
|
|---|
| 368 | else theDencity = new G4NuclearFermiDensity(theA, theZ);
|
|---|
| 369 |
|
|---|
| 370 | // GetDencity() accepts only G4ThreeVector so build it:
|
|---|
| 371 | G4ThreeVector aPosition(0.0, 0.0, radius);
|
|---|
| 372 | G4double density = theDencity->GetDensity(aPosition);
|
|---|
| 373 | delete theDencity;
|
|---|
| 374 |
|
|---|
| 375 | return coeff_pion * density;
|
|---|
| 376 | */
|
|---|
| 377 |
|
|---|
| 378 | return 0.0;
|
|---|
| 379 | }
|
|---|