source: trunk/source/processes/hadronic/models/binary_cascade/src/G4RKPropagation.cc@ 1036

Last change on this file since 1036 was 819, checked in by garnier, 17 years ago

import all except CVS

File size: 26.7 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// -------------------------------------------------------------------
28// GEANT 4 class implementation file
29//
30// CERN, Geneva, Switzerland
31//
32// File name: G4RKPropagation.cc
33//
34// Author: Alessandro Brunengo (Alessandro.Brunengo@ge.infn.it)
35//
36// Creation date: 6 June 2000
37// -------------------------------------------------------------------
38#include "G4RKPropagation.hh"
39// nuclear fields
40#include "G4VNuclearField.hh"
41#include "G4ProtonField.hh"
42#include "G4NeutronField.hh"
43#include "G4AntiProtonField.hh"
44#include "G4KaonPlusField.hh"
45#include "G4KaonMinusField.hh"
46#include "G4KaonZeroField.hh"
47#include "G4PionPlusField.hh"
48#include "G4PionMinusField.hh"
49#include "G4PionZeroField.hh"
50#include "G4SigmaPlusField.hh"
51#include "G4SigmaMinusField.hh"
52#include "G4SigmaZeroField.hh"
53// particles properties
54#include "G4Proton.hh"
55#include "G4Neutron.hh"
56#include "G4AntiProton.hh"
57#include "G4KaonPlus.hh"
58#include "G4KaonMinus.hh"
59#include "G4KaonZero.hh"
60#include "G4PionPlus.hh"
61#include "G4PionMinus.hh"
62#include "G4PionZero.hh"
63#include "G4SigmaPlus.hh"
64#include "G4SigmaMinus.hh"
65#include "G4SigmaZero.hh"
66
67#include "globals.hh"
68
69#include "G4KM_OpticalEqRhs.hh"
70#include "G4KM_NucleonEqRhs.hh"
71#include "G4ClassicalRK4.hh"
72#include "G4MagIntegratorDriver.hh"
73
74#include "G4LorentzRotation.hh"
75
76// unsigned EncodingHashFun(const G4int& aEncoding);
77
78G4RKPropagation::G4RKPropagation() : theNucleus(0),
79 theFieldMap(0), theEquationMap(0),
80 theField(0)
81{ }
82
83
84G4RKPropagation::G4RKPropagation(const G4RKPropagation &) :
85G4VFieldPropagation()
86{ }
87
88
89G4RKPropagation::~G4RKPropagation()
90{
91// free theFieldMap memory
92 if(theFieldMap) delete_FieldsAndMap(theFieldMap);
93
94// free theEquationMap memory
95 if(theEquationMap) delete_EquationsAndMap(theEquationMap);
96
97 if (theField) delete theField;
98}
99
100
101
102const G4RKPropagation & G4RKPropagation::operator=(const G4RKPropagation &)
103{
104 throw G4HadronicException(__FILE__, __LINE__, "G4RKPropagation::operator= meant not to be accessible");
105 return *this;
106}
107
108G4int G4RKPropagation::operator==(const G4RKPropagation &) const
109{
110 throw G4HadronicException(__FILE__, __LINE__, "G4RKPropagation::operator== meant not to be accessible");
111 return 0;
112}
113
114G4int G4RKPropagation::operator!=(const G4RKPropagation &) const
115{
116 throw G4HadronicException(__FILE__, __LINE__, "G4RKPropagation::operator!= meant not to be accessible");
117 return 1;
118}
119
120//----------------------------------------------------------------------------
121
122
123//----------------------------------------------------------------------------
124void G4RKPropagation::Init(G4V3DNucleus * nucleus)
125//----------------------------------------------------------------------------
126{
127
128// free theFieldMap memory
129 if(theFieldMap) delete_FieldsAndMap(theFieldMap);
130
131// free theEquationMap memory
132 if(theEquationMap) delete_EquationsAndMap(theEquationMap);
133
134 if (theField) delete theField;
135
136// Initialize the nuclear field map.
137 theNucleus = nucleus;
138 theOuterRadius = theNucleus->GetOuterRadius();
139
140 theFieldMap = new std::map <G4int, G4VNuclearField*, std::less<G4int> >;
141
142 (*theFieldMap)[G4Proton::Proton()->GetPDGEncoding()] = new G4ProtonField(theNucleus);
143 (*theFieldMap)[G4Neutron::Neutron()->GetPDGEncoding()] = new G4NeutronField(theNucleus);
144 (*theFieldMap)[G4AntiProton::AntiProton()->GetPDGEncoding()] = new G4AntiProtonField(theNucleus);
145 (*theFieldMap)[G4KaonPlus::KaonPlus()->GetPDGEncoding()] = new G4KaonPlusField(theNucleus);
146 (*theFieldMap)[G4KaonMinus::KaonMinus()->GetPDGEncoding()] = new G4KaonMinusField(theNucleus);
147 (*theFieldMap)[G4KaonZero::KaonZero()->GetPDGEncoding()] = new G4KaonZeroField(theNucleus);
148 (*theFieldMap)[G4PionPlus::PionPlus()->GetPDGEncoding()] = new G4PionPlusField(theNucleus);
149 (*theFieldMap)[G4PionMinus::PionMinus()->GetPDGEncoding()] = new G4PionMinusField(theNucleus);
150 (*theFieldMap)[G4PionZero::PionZero()->GetPDGEncoding()] = new G4PionZeroField(theNucleus);
151 (*theFieldMap)[G4SigmaPlus::SigmaPlus()->GetPDGEncoding()] = new G4SigmaPlusField(theNucleus);
152 (*theFieldMap)[G4SigmaMinus::SigmaMinus()->GetPDGEncoding()] = new G4SigmaMinusField(theNucleus);
153 (*theFieldMap)[G4SigmaZero::SigmaZero()->GetPDGEncoding()] = new G4SigmaZeroField(theNucleus);
154
155 theEquationMap = new std::map <G4int, G4Mag_EqRhs*, std::less<G4int> >;
156
157// theField needed by the design of G4Mag_eqRhs
158 theField = new G4KM_DummyField; //Field not needed for integration
159 G4KM_OpticalEqRhs * opticalEq;
160 G4KM_NucleonEqRhs * nucleonEq;
161 G4double mass;
162 G4double opticalCoeff;
163
164 nucleonEq = new G4KM_NucleonEqRhs(theField, theNucleus);
165 mass = G4Proton::Proton()->GetPDGMass();
166 nucleonEq->SetMass(mass);
167 (*theEquationMap)[G4Proton::Proton()->GetPDGEncoding()] = nucleonEq;
168
169 nucleonEq = new G4KM_NucleonEqRhs(theField, theNucleus);
170 mass = G4Neutron::Neutron()->GetPDGMass();
171 nucleonEq->SetMass(mass);
172 (*theEquationMap)[G4Neutron::Neutron()->GetPDGEncoding()] = nucleonEq;
173
174 opticalEq = new G4KM_OpticalEqRhs(theField, theNucleus);
175 mass = G4AntiProton::AntiProton()->GetPDGMass();
176 opticalCoeff =
177 (*theFieldMap)[G4AntiProton::AntiProton()->GetPDGEncoding()]->GetCoeff();
178 opticalEq->SetFactor(mass,opticalCoeff);
179 (*theEquationMap)[G4AntiProton::AntiProton()->GetPDGEncoding()] = opticalEq;
180
181 opticalEq = new G4KM_OpticalEqRhs(theField, theNucleus);
182 mass = G4KaonPlus::KaonPlus()->GetPDGMass();
183 opticalCoeff =
184 (*theFieldMap)[G4KaonPlus::KaonPlus()->GetPDGEncoding()]->GetCoeff();
185 opticalEq->SetFactor(mass,opticalCoeff);
186 (*theEquationMap)[G4KaonPlus::KaonPlus()->GetPDGEncoding()] = opticalEq;
187
188 opticalEq = new G4KM_OpticalEqRhs(theField, theNucleus);
189 mass = G4KaonMinus::KaonMinus()->GetPDGMass();
190 opticalCoeff =
191 (*theFieldMap)[G4KaonMinus::KaonMinus()->GetPDGEncoding()]->GetCoeff();
192 opticalEq->SetFactor(mass,opticalCoeff);
193 (*theEquationMap)[G4KaonMinus::KaonMinus()->GetPDGEncoding()] = opticalEq;
194
195 opticalEq = new G4KM_OpticalEqRhs(theField, theNucleus);
196 mass = G4KaonZero::KaonZero()->GetPDGMass();
197 opticalCoeff =
198 (*theFieldMap)[G4KaonZero::KaonZero()->GetPDGEncoding()]->GetCoeff();
199 opticalEq->SetFactor(mass,opticalCoeff);
200 (*theEquationMap)[G4KaonZero::KaonZero()->GetPDGEncoding()] = opticalEq;
201
202 opticalEq = new G4KM_OpticalEqRhs(theField, theNucleus);
203 mass = G4PionPlus::PionPlus()->GetPDGMass();
204 opticalCoeff =
205 (*theFieldMap)[G4PionPlus::PionPlus()->GetPDGEncoding()]->GetCoeff();
206 opticalEq->SetFactor(mass,opticalCoeff);
207 (*theEquationMap)[G4PionPlus::PionPlus()->GetPDGEncoding()] = opticalEq;
208
209 opticalEq = new G4KM_OpticalEqRhs(theField, theNucleus);
210 mass = G4PionMinus::PionMinus()->GetPDGMass();
211 opticalCoeff =
212 (*theFieldMap)[G4PionMinus::PionMinus()->GetPDGEncoding()]->GetCoeff();
213 opticalEq->SetFactor(mass,opticalCoeff);
214 (*theEquationMap)[G4PionMinus::PionMinus()->GetPDGEncoding()] = opticalEq;
215
216 opticalEq = new G4KM_OpticalEqRhs(theField, theNucleus);
217 mass = G4PionZero::PionZero()->GetPDGMass();
218 opticalCoeff =
219 (*theFieldMap)[G4PionZero::PionZero()->GetPDGEncoding()]->GetCoeff();
220 opticalEq->SetFactor(mass,opticalCoeff);
221 (*theEquationMap)[G4PionZero::PionZero()->GetPDGEncoding()] = opticalEq;
222
223 opticalEq = new G4KM_OpticalEqRhs(theField, theNucleus);
224 mass = G4SigmaPlus::SigmaPlus()->GetPDGMass();
225 opticalCoeff =
226 (*theFieldMap)[G4SigmaPlus::SigmaPlus()->GetPDGEncoding()]->GetCoeff();
227 opticalEq->SetFactor(mass,opticalCoeff);
228 (*theEquationMap)[G4SigmaPlus::SigmaPlus()->GetPDGEncoding()] = opticalEq;
229
230 opticalEq = new G4KM_OpticalEqRhs(theField, theNucleus);
231 mass = G4SigmaMinus::SigmaMinus()->GetPDGMass();
232 opticalCoeff =
233 (*theFieldMap)[G4SigmaMinus::SigmaMinus()->GetPDGEncoding()]->GetCoeff();
234 opticalEq->SetFactor(mass,opticalCoeff);
235 (*theEquationMap)[G4SigmaMinus::SigmaMinus()->GetPDGEncoding()] = opticalEq;
236
237 opticalEq = new G4KM_OpticalEqRhs(theField, theNucleus);
238 mass = G4SigmaZero::SigmaZero()->GetPDGMass();
239 opticalCoeff =
240 (*theFieldMap)[G4SigmaZero::SigmaZero()->GetPDGEncoding()]->GetCoeff();
241 opticalEq->SetFactor(mass,opticalCoeff);
242 (*theEquationMap)[G4SigmaZero::SigmaZero()->GetPDGEncoding()] = opticalEq;
243}
244
245
246//#define debug_1_RKPropagation 1
247//----------------------------------------------------------------------------
248void G4RKPropagation::Transport(G4KineticTrackVector & active,
249//----------------------------------------------------------------------------
250 const G4KineticTrackVector &,
251 G4double timeStep)
252{
253// reset momentum transfer to field
254 theMomentumTranfer=0;
255
256// Loop over tracks
257
258 std::vector<G4KineticTrack *>::iterator i;
259 for(i = active.begin(); i != active.end(); ++i)
260 {
261 G4double currTimeStep = timeStep;
262 G4KineticTrack * kt = *i;
263 G4int encoding = kt->GetDefinition()->GetPDGEncoding();
264 std::map <G4int, G4VNuclearField*, std::less<G4int> >::iterator fieldIter= theFieldMap->find(encoding);
265
266 G4VNuclearField* currentField=0;
267 if ( fieldIter != theFieldMap->end() ) currentField=fieldIter->second;
268
269// debug
270// if ( timeStep > 1e30 ) {
271// G4cout << " Name :" << kt->GetDefinition()->GetParticleName() << G4endl;
272// }
273
274// Get the time of intersections with the nucleus surface.
275 G4double t_enter, t_leave;
276// if the particle does not intersecate with the nucleus go to next particle
277 if(!GetSphereIntersectionTimes(kt, t_enter, t_leave))
278 {
279 kt->SetState(G4KineticTrack::miss_nucleus);
280 continue;
281 }
282
283
284#ifdef debug_1_RKPropagation
285 G4cout <<" kt,timeStep, Intersection times tenter, tleave "
286 <<kt<<" "<< currTimeStep << " / " << t_enter << " / " << t_leave <<G4endl;
287#endif
288
289// if the particle is already outside nucleus go to next @@GF should never happen? check!
290// does happen for particles added as late....
291// if(t_leave < 0 )
292// {
293// throw G4HadronicException(__FILE__, __LINE__, "G4RKPropagation:: Attempt to track particle past a nucleus");
294// continue;
295// }
296
297// Apply a straight line propagation for particle types
298// not included in the model
299 if( ! currentField )
300 {
301 if(currTimeStep == DBL_MAX)currTimeStep = t_leave*1.05;
302 FreeTransport(kt, currTimeStep);
303 if ( currTimeStep >= t_leave )
304 {
305 if ( kt->GetState() == G4KineticTrack::inside )
306 { kt->SetState(G4KineticTrack::gone_out); }
307 else
308 { kt->SetState(G4KineticTrack::miss_nucleus);}
309 }
310 continue;
311 }
312
313 if(t_enter > 0) // the particle is out. Transport free to the surface
314 {
315 if(t_enter > currTimeStep) // the particle won't enter the nucleus
316 {
317 FreeTransport(kt, currTimeStep);
318 continue;
319 }
320 else
321 {
322 FreeTransport(kt, t_enter); // go to surface
323 currTimeStep -= t_enter;
324 t_leave -= t_enter; // time left to leave nucleus
325// on the surface the particle loose the barrier energy
326// G4double newE = mom.e()-(*theFieldMap)[encoding]->GetBarrier();
327// GetField = Barrier + FermiPotential
328 G4double newE = kt->GetTrackingMomentum().e()-currentField->GetField(kt->GetPosition());
329// G4cout << " enter nucleus, E out/in: " << kt->GetTrackingMomentum().e() << " / " << newE <<G4endl;
330// G4cout << " the Field "<< currentField->GetField(kt->GetPosition()) << " "<< kt->GetPosition()<<G4endl;
331// G4cout << " the particle "<<kt->GetDefinition()->GetParticleName()<<G4endl;
332 if(newE <= kt->GetActualMass()) // the particle cannot enter the nucleus
333 {
334// FixMe: should be "pushed back?"
335// for the moment take it past the nucleus, so we'll not worry next time..
336 FreeTransport(kt, 1.1*t_leave); // take past nucleus
337 kt->SetState(G4KineticTrack::miss_nucleus);
338// G4cout << "G4RKPropagation: Warning particle cannot enter Nucleus :" << G4endl;
339// G4cout << " enter nucleus, E out/in: " << kt->GetTrackingMomentum().e() << " / " << newE <<G4endl;
340// G4cout << " the Field "<< currentField->GetField(kt->GetPosition()) << " "<< kt->GetPosition()<<G4endl;
341// G4cout << " the particle "<<kt->GetDefinition()->GetParticleName()<<G4endl;
342 continue;
343 }
344//
345 G4double newP = std::sqrt(newE*newE- sqr(kt->GetActualMass()));
346 G4LorentzVector new4Mom(newP*kt->GetTrackingMomentum().vect().unit(), newE);
347 G4ThreeVector transfer(kt->GetTrackingMomentum().vect()-new4Mom.vect());
348 G4ThreeVector boost= transfer / std::sqrt(transfer.mag2() + sqr(theNucleus->GetMass()));
349 new4Mom*=G4LorentzRotation(boost);
350 kt->SetTrackingMomentum(new4Mom);
351 kt->SetState(G4KineticTrack::inside);
352// G4cout <<" Enter Nucleus - E/Field/Sum: " <<kt->GetTrackingMomentum().e() << " / "
353// << (*theFieldMap)[encoding]->GetField(kt->GetPosition()) << " / "
354// << kt->GetTrackingMomentum().e()-currentField->GetField(kt->GetPosition())
355// << G4endl
356// << " Barrier / field just inside nucleus (0.9999*kt->GetPosition())"
357// << (*theFieldMap)[encoding]->GetBarrier() << " / "
358// << (*theFieldMap)[encoding]->GetField(0.9999*kt->GetPosition())
359// << G4endl;
360 }
361 }
362
363// FixMe: should I add a control on theCutOnP here?
364// Transport the particle into the nucleus
365// G4cerr << "RKPropagation t_leave, curTimeStep " <<t_leave << " " <<currTimeStep<<G4endl;
366 G4bool is_exiting=false;
367 if(currTimeStep > t_leave) // particle will exit from the nucleus
368 {
369 currTimeStep = t_leave;
370 is_exiting=true;
371 }
372
373#ifdef debug_1_RKPropagation
374 G4cerr << "RKPropagation is_exiting?, t_leave, curTimeStep " <<is_exiting<<" "<<t_leave << " " <<currTimeStep<<G4endl;
375 G4cout << "RKPropagation Ekin, field, projectile potential, p "
376 << kt->GetTrackingMomentum().e() - kt->GetTrackingMomentum().mag() << " "
377 << kt->GetPosition()<<" "
378 << G4endl << currentField->GetField(kt->GetPosition()) << " "
379 << kt->GetProjectilePotential()<< G4endl
380 << kt->GetTrackingMomentum()
381 << G4endl;
382#endif
383
384 G4LorentzVector momold=kt->GetTrackingMomentum();
385 G4ThreeVector posold=kt->GetPosition();
386
387// if (currentField->GetField(kt->GetPosition()) > kt->GetProjectilePotential() ||
388 if (currTimeStep > 0 &&
389 ! FieldTransport(kt, currTimeStep)) {
390 FreeTransport(kt,currTimeStep);
391 }
392
393#ifdef debug_1_RKPropagation
394 G4cout << "RKPropagation Ekin, field, p "
395 << kt->GetTrackingMomentum().e() - kt->GetTrackingMomentum().mag() << " "
396 << G4endl << currentField->GetField(kt->GetPosition())<< G4endl
397 << kt->GetTrackingMomentum()
398 // << G4endl;
399 << "delta p " << momold-kt->GetTrackingMomentum() << G4endl
400 << "del pos " << posold-kt->GetPosition()
401 << G4endl;
402#endif
403
404// complete the transport
405// FixMe: in some cases there could be a significant
406// part to do still in the nucleus, or we stepped to far... depending on
407// slope of potential
408 G4double t_in=-1, t_out=0; // set onto boundary.
409
410// should go out, or are already out by a too long step..
411 if(is_exiting ||
412 (GetSphereIntersectionTimes(kt, t_in, t_out) &&t_in<0 && t_out<=0 )) // particle is exiting
413 {
414 if(t_in < 0 && t_out >= 0) //still inside, transport safely out.
415 {
416// transport free to a position that is surely out of the nucleus, to avoid
417// a new transportation and a new adding the barrier next loop.
418 G4ThreeVector savePos = kt->GetPosition();
419 FreeTransport(kt, t_out);
420 // and evaluate the right the energy
421 G4double newE=kt->GetTrackingMomentum().e();
422
423// G4cout << " V pos/savePos << "
424// << (*theFieldMap)[encoding]->GetField(kt->GetPosition())<< " / "
425// << (*theFieldMap)[encoding]->GetField(savePos)
426// << G4endl;
427
428 if ( std::abs(currentField->GetField(savePos)) > 0. &&
429 std::abs(currentField->GetField(kt->GetPosition())) > 0.)
430 { // FixMe GF: savePos/pos may be out of nucleus, where GetField(..)=0
431 // This wrongly adds or subtracts the Barrier here while
432 // this is done later.
433 newE += currentField->GetField(savePos)
434 - currentField->GetField(kt->GetPosition());
435 }
436
437// G4cout << " go border nucleus, E in/border: " << kt->GetTrackingMomentum() << " / " << newE <<G4endl;
438
439 if(newE < kt->GetActualMass())
440 {
441#ifdef debug_1_RKPropagation
442 G4cout << "RKPropagation-Transport: problem with particle exiting - ignored" << G4endl;
443 G4cout << " cannot leave nucleus, E in/out: " << kt->GetTrackingMomentum() << " / " << newE <<G4endl;
444#endif
445 if (kt->GetDefinition() == G4Proton::Proton() ||
446 kt->GetDefinition() == G4Neutron::Neutron() ) {
447 kt->SetState(G4KineticTrack::captured);
448 } else {
449 kt->SetState(G4KineticTrack::gone_out); //@@GF tofix
450 }
451 continue; // the particle cannot exit the nucleus
452 }
453 G4double newP = std::sqrt(newE*newE- sqr(kt->GetActualMass()));
454 G4LorentzVector new4Mom(newP*kt->GetTrackingMomentum().vect().unit(), newE);
455 G4ThreeVector transfer(kt->GetTrackingMomentum().vect()-new4Mom.vect());
456 G4ThreeVector boost= transfer / std::sqrt(transfer.mag2() + sqr(theNucleus->GetMass()));
457 new4Mom*=G4LorentzRotation(boost);
458 kt->SetTrackingMomentum(new4Mom);
459 }
460 // add the potential barrier
461 // FixMe the Coulomb field is not parallel to mom, this is simple approximation
462 G4double newE = kt->GetTrackingMomentum().e()+currentField->GetField(kt->GetPosition());
463 if(newE < kt->GetActualMass())
464 { // the particle cannot exit the nucleus @@@ GF check.
465#ifdef debug_1_RKPropagation
466 G4cout << " cannot leave nucleus, E in/out: " << kt->GetTrackingMomentum() << " / " << newE <<G4endl;
467#endif
468 if (kt->GetDefinition() == G4Proton::Proton() ||
469 kt->GetDefinition() == G4Neutron::Neutron() ) {
470 kt->SetState(G4KineticTrack::captured);
471 } else {
472 kt->SetState(G4KineticTrack::gone_out); //@@GF tofix
473 }
474 continue;
475 }
476 G4double newP = std::sqrt(newE*newE- sqr(kt->GetActualMass()));
477 G4LorentzVector new4Mom(newP*kt->GetTrackingMomentum().vect().unit(), newE);
478 G4ThreeVector transfer(kt->GetTrackingMomentum().vect()-new4Mom.vect());
479 G4ThreeVector boost= transfer / std::sqrt(transfer.mag2() + sqr(theNucleus->GetMass()));
480 new4Mom*=G4LorentzRotation(boost);
481 kt->SetTrackingMomentum(new4Mom);
482 kt->SetState(G4KineticTrack::gone_out);
483 }
484
485
486
487 }
488
489}
490
491
492//----------------------------------------------------------------------------
493 G4ThreeVector G4RKPropagation::GetMomentumTransfer() const
494//----------------------------------------------------------------------------
495{
496 return theMomentumTranfer;
497}
498
499
500//----------------------------------------------------------------------------
501G4bool G4RKPropagation::FieldTransport(G4KineticTrack * kt, const G4double timeStep)
502//----------------------------------------------------------------------------
503{
504 theMomentumTranfer=0;
505// G4cout <<"Stepper input"<<kt->GetTrackingMomentum()<<G4endl;
506// create the integrator stepper
507 // G4Mag_EqRhs * equation = mapIter->second;
508 G4Mag_EqRhs * equation = (*theEquationMap)[kt->GetDefinition()->GetPDGEncoding()];
509 G4MagIntegratorStepper * stepper = new G4ClassicalRK4(equation);
510
511// create the integrator driver
512 G4double hMin = 1.0e-25*second; // arbitrary choice. Means 0.03 fm at c
513 G4MagInt_Driver * driver = new G4MagInt_Driver(hMin, stepper);
514
515// Temporary: use driver->AccurateAdvance()
516 // create the G4FieldTrack needed by AccurateAdvance
517 G4double curveLength = 0;
518 G4FieldTrack track(kt->GetPosition(),
519 kt->GetTrackingMomentum().vect().unit(), // momentum direction
520 curveLength, // curvelength
521 kt->GetTrackingMomentum().e()-kt->GetActualMass(), // kinetic energy
522 kt->GetActualMass(), // restmass
523 kt->GetTrackingMomentum().beta()*c_light); // velocity
524 // integrate
525 G4double eps = 0.01;
526// G4cout << "currTimeStep = " << currTimeStep << G4endl;
527 if(!driver->AccurateAdvance(track, timeStep, eps))
528 { // cannot track this particle
529#ifdef debug_1_RKPropagation
530 std::cerr << "G4RKPropagation::FieldTransport() warning: integration error."
531 << G4endl << "position " << kt->GetPosition() << " 4mom " <<kt->GetTrackingMomentum()
532 <<G4endl << " timestep " <<timeStep
533 << G4endl;
534#endif
535 delete driver;
536 delete stepper;
537 return false;
538 }
539/*
540 * G4cout <<" E/Field/Sum be4 : " <<mom.e() << " / "
541 * << (*theFieldMap)[encoding]->GetField(pos) << " / "
542 * << mom.e()+(*theFieldMap)[encoding]->GetField(pos)
543 * << G4endl;
544 */
545
546// Correct for momentum ( thus energy) transfered to nucleus, boost particle into moving nuclues frame.
547 G4ThreeVector MomentumTranfer = kt->GetTrackingMomentum().vect() - track.GetMomentum();
548 G4ThreeVector boost= MomentumTranfer / std::sqrt (MomentumTranfer.mag2() +sqr(theNucleus->GetMass()));
549
550 // update the kt
551 kt->SetPosition(track.GetPosition());
552 G4LorentzVector mom(track.GetMomentum(),std::sqrt(track.GetMomentum().mag2() + sqr(kt->GetActualMass())));
553 mom *= G4LorentzRotation( boost );
554 theMomentumTranfer += ( kt->GetTrackingMomentum() - mom ).vect();
555 kt->SetTrackingMomentum(mom);
556
557// G4cout <<"Stepper output"<<kt<<" "<<kt->GetTrackingMomentum()<<" "<<kt->GetPosition()<<G4endl;
558/*
559 * G4ThreeVector MomentumTranfer2=kt->GetTrackingMomentum().vect() - mom.vect();
560 * G4cout << " MomentumTransfer/corrected" << MomentumTranfer << " " << MomentumTranfer.mag()
561 * << " " << MomentumTranfer2 << " " << MomentumTranfer2.mag() << " "
562 * << MomentumTranfer-MomentumTranfer2 << " "<<
563 * MomentumTranfer-MomentumTranfer2.mag() << " " << G4endl;
564 * G4cout <<" E/Field/Sum aft : " <<mom.e() << " / "
565 * << " / " << (*theFieldMap)[encoding]->GetField(pos)<< " / "
566 * << mom.e()+(*theFieldMap)[encoding]->GetField(pos)
567 * << G4endl;
568 */
569
570 delete driver;
571 delete stepper;
572 return true;
573}
574
575//----------------------------------------------------------------------------
576G4bool G4RKPropagation::FreeTransport(G4KineticTrack * kt, const G4double timeStep)
577//----------------------------------------------------------------------------
578{
579 G4ThreeVector newpos = kt->GetPosition() +
580 timeStep*c_light/kt->GetTrackingMomentum().e() * kt->GetTrackingMomentum().vect();
581 kt->SetPosition(newpos);
582 return true;
583}
584
585/*
586G4bool G4RKPropagation::WillBeCaptured(const G4KineticTrack * kt)
587{
588 G4double radius = theOuterRadius;
589
590// evaluate the final energy. Il will be captured if newE or newP < 0
591 G4ParticleDefinition * definition = kt->GetDefinition();
592 G4double mass = definition->GetPDGMass();
593 G4ThreeVector pos = kt->GetPosition();
594 G4LorentzVector mom = kt->GetTrackingMomentum();
595 G4VNuclearField * field = (*theFieldMap)[definition->GetPDGEncoding()];
596 G4ThreeVector newPos(0, 0, radius); // to get the field on the surface
597
598 G4double newE = mom.e()+field->GetField(pos)-field->GetField(newPos);
599
600 return ((newE < mass) ? false : true);
601}
602*/
603
604
605
606//----------------------------------------------------------------------------
607G4bool G4RKPropagation::GetSphereIntersectionTimes(const G4double radius,
608//----------------------------------------------------------------------------
609 const G4ThreeVector & currentPos,
610 const G4LorentzVector & momentum,
611 G4double & t1, G4double & t2)
612{
613 G4ThreeVector speed = momentum.vect()/momentum.e(); // boost vector
614 G4double scalarProd = currentPos.dot(speed);
615 G4double speedMag = speed.mag();
616 G4double sqrtArg = scalarProd*scalarProd -
617 speedMag*speedMag*(currentPos.mag2()-radius*radius);
618 if(sqrtArg <= 0.) // particle will not intersect the sphere
619 {
620// G4cout << " GetSphereIntersectionTimes sqrtArg negative: " << sqrtArg << G4endl;
621 return false;
622 }
623 t1 = (-scalarProd - std::sqrt(sqrtArg))/speedMag/speedMag/c_light;
624 t2 = (-scalarProd + std::sqrt(sqrtArg))/speedMag/speedMag/c_light;
625 return true;
626}
627
628//----------------------------------------------------------------------------
629G4bool G4RKPropagation::GetSphereIntersectionTimes(const G4KineticTrack * kt,
630 G4double & t1, G4double & t2)
631{
632 G4double radius = theOuterRadius + 3*fermi; // "safety" of 3 fermi
633 G4ThreeVector speed = kt->GetTrackingMomentum().vect()/kt->GetTrackingMomentum().e(); // bost vector
634 G4double scalarProd = kt->GetPosition().dot(speed);
635 G4double speedMag2 = speed.mag2();
636 G4double sqrtArg = scalarProd*scalarProd -
637 speedMag2*(kt->GetPosition().mag2()-radius*radius);
638 if(sqrtArg <= 0.) // particle will not intersect the sphere
639 {
640 return false;
641 }
642 t1 = (-scalarProd - std::sqrt(sqrtArg))/speedMag2/c_light;
643 t2 = (-scalarProd + std::sqrt(sqrtArg))/speedMag2/c_light;
644 return true;
645}
646
647// Implementation methods
648
649//----------------------------------------------------------------------------
650void G4RKPropagation::delete_FieldsAndMap(
651//----------------------------------------------------------------------------
652 std::map <G4int, G4VNuclearField *, std::less<G4int> > * aMap)
653{
654 if(aMap)
655 {
656 std::map <G4int, G4VNuclearField *, std::less<G4int> >::iterator cur;
657 for(cur = aMap->begin(); cur != aMap->end(); ++cur)
658 delete (*cur).second;
659
660 aMap->clear();
661 delete aMap;
662 }
663
664}
665
666//----------------------------------------------------------------------------
667void G4RKPropagation::delete_EquationsAndMap(
668//----------------------------------------------------------------------------
669 std::map <G4int, G4Mag_EqRhs *, std::less<G4int> > * aMap)
670{
671 if(aMap)
672 {
673 std::map <G4int, G4Mag_EqRhs *, std::less<G4int> >::iterator cur;
674 for(cur = aMap->begin(); cur != aMap->end(); ++cur)
675 delete (*cur).second;
676
677 aMap->clear();
678 delete aMap;
679 }
680}
Note: See TracBrowser for help on using the repository browser.