| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // Implementation of the HETC88 code into Geant4.
|
|---|
| 28 | // Evaporation and De-excitation parts
|
|---|
| 29 | // T. Lampen, Helsinki Institute of Physics, May-2000
|
|---|
| 30 |
|
|---|
| 31 | #include "G4BEChargedChannel.hh"
|
|---|
| 32 |
|
|---|
| 33 |
|
|---|
| 34 | G4BEChargedChannel::G4BEChargedChannel()
|
|---|
| 35 | {
|
|---|
| 36 | verboseLevel = 0;
|
|---|
| 37 | }
|
|---|
| 38 |
|
|---|
| 39 |
|
|---|
| 40 | G4BEChargedChannel::~G4BEChargedChannel()
|
|---|
| 41 | {
|
|---|
| 42 | }
|
|---|
| 43 |
|
|---|
| 44 |
|
|---|
| 45 | void G4BEChargedChannel::calculateProbability()
|
|---|
| 46 | {
|
|---|
| 47 | G4int residualZ = nucleusZ - particleZ;
|
|---|
| 48 | G4int residualA = nucleusA - particleA;
|
|---|
| 49 |
|
|---|
| 50 | // Check if nucleus is too small, if this evaporation channel
|
|---|
| 51 | // leads to an impossible residual nucleus or if there is no enough
|
|---|
| 52 | // energy.
|
|---|
| 53 | if ( nucleusA < 2.0 * particleA ||
|
|---|
| 54 | nucleusZ < 2.0 * particleZ ||
|
|---|
| 55 | residualA <= residualZ ||
|
|---|
| 56 | excitationEnergy - getThresh() - correction < 0 )
|
|---|
| 57 | {
|
|---|
| 58 | if ( verboseLevel >= 6 )
|
|---|
| 59 | G4cout << "G4BEChargedChannel : calculateProbability for " << getName() << " = 0 " << G4endl;
|
|---|
| 60 | emissionProbability = 0;
|
|---|
| 61 | return;
|
|---|
| 62 | }
|
|---|
| 63 |
|
|---|
| 64 | // In HETC88 s-s0 was used in std::exp( s ), in which s0 was either 50 or
|
|---|
| 65 | // max(s_i), where i goes over all channels.
|
|---|
| 66 |
|
|---|
| 67 | G4double levelParam = getLevelDensityParameter();
|
|---|
| 68 | G4double s = 2 * std::sqrt( levelParam * ( excitationEnergy - getThresh() - correction ) );
|
|---|
| 69 | G4double constant = A / 2 * ( 2 * spin + 1 ) * ( 1 + coulombFactor() );
|
|---|
| 70 | G4double eye1 = ( std::pow( s, 2. ) - 3 * s + 3 ) / ( 4 * std::pow( levelParam, 2. ) ) * std::exp( s );
|
|---|
| 71 |
|
|---|
| 72 | emissionProbability = constant * std::pow( G4double(residualA), 0.6666666 ) * eye1;
|
|---|
| 73 |
|
|---|
| 74 | if ( verboseLevel >= 6 )
|
|---|
| 75 | G4cout << "G4BEChargedChannel : calculateProbability for " << getName() << G4endl
|
|---|
| 76 | << " res A = " << residualA << G4endl
|
|---|
| 77 | << " res Z = " << residualZ << G4endl
|
|---|
| 78 | << " c*(c_i+1) = "<< constant << G4endl
|
|---|
| 79 | << " qmfactor = "<< qmFactor() << G4endl
|
|---|
| 80 | << " coulombfactor = "<< coulombFactor() << G4endl
|
|---|
| 81 | << " E = " << excitationEnergy << G4endl
|
|---|
| 82 | << " correction = " << correction << G4endl
|
|---|
| 83 | << " eye1 = " << eye1 << G4endl
|
|---|
| 84 | << " levelParam = " << levelParam << G4endl
|
|---|
| 85 | << " thresh = " << getThresh() << G4endl
|
|---|
| 86 | << " s = " << s << G4endl
|
|---|
| 87 | << " probability = " << emissionProbability << G4endl;
|
|---|
| 88 |
|
|---|
| 89 | return;
|
|---|
| 90 | }
|
|---|
| 91 |
|
|---|
| 92 |
|
|---|
| 93 | G4double G4BEChargedChannel::sampleKineticEnergy()
|
|---|
| 94 | {
|
|---|
| 95 | // G4double randExp1;
|
|---|
| 96 | // G4double randExp2;
|
|---|
| 97 | // G4double s;
|
|---|
| 98 | // G4double levelParam;
|
|---|
| 99 | // G4double kineticEnergyAv;
|
|---|
| 100 | // G4double kineticEnergy;
|
|---|
| 101 |
|
|---|
| 102 | // randExp1 = RandExponential::shoot( 1 );
|
|---|
| 103 | // randExp2 = RandExponential::shoot( 1 );
|
|---|
| 104 | // levelParam = getLevelDensityParameter();
|
|---|
| 105 | // s = 2 * std::sqrt( levelParam * ( excitationEnergy - getThresh() - correction ) );
|
|---|
| 106 | // kineticEnergyAv = 2 * ( std::pow( s, 3. ) - 6.0 * std::pow( s, 2. ) + 15.0 * s - 15.0 ) /
|
|---|
| 107 | // ( ( 2.0 * std::pow( s, 2. ) - 6.0 * s + 6.0 ) * levelParam );
|
|---|
| 108 |
|
|---|
| 109 | // kineticEnergy = 0.5 * ( randExp1 + randExp2 ) * kineticEnergyAv + getThresh() - getQ();
|
|---|
| 110 |
|
|---|
| 111 | // if ( verboseLevel >= 10 )
|
|---|
| 112 | // G4cout << " G4BEChargedChannel : sampleKineticEnergy() " << G4endl
|
|---|
| 113 | // << " kinetic e = " << kineticEnergy << G4endl
|
|---|
| 114 | // << " average = " << kineticEnergyAv << G4endl
|
|---|
| 115 | // << " s = " << s << G4endl
|
|---|
| 116 | // << " levelParam = " << levelParam << G4endl
|
|---|
| 117 | // << " randExp1 = " << randExp1 << G4endl
|
|---|
| 118 | // << " randExp2 = " << randExp2 << G4endl;
|
|---|
| 119 |
|
|---|
| 120 | G4double levelParam;
|
|---|
| 121 | levelParam = getLevelDensityParameter();
|
|---|
| 122 |
|
|---|
| 123 | const G4double xMax = excitationEnergy - getThresh() - correction; // maximum number
|
|---|
| 124 | const G4double xProb = ( - 1 + std::sqrt ( 1 + 4 * levelParam * xMax ) ) / ( 2 * levelParam ); // most probable value
|
|---|
| 125 | const G4double m = xProb * std::exp ( 2 * std::sqrt ( levelParam * ( xMax - xProb ) ) ); // maximum value of P(x)
|
|---|
| 126 |
|
|---|
| 127 | // Sample x according to density function P(x) with rejection method
|
|---|
| 128 | G4double r1;
|
|---|
| 129 | G4double r2;
|
|---|
| 130 | G4int koe=0;
|
|---|
| 131 | do
|
|---|
| 132 | {
|
|---|
| 133 | r1 = G4UniformRand() * xMax;
|
|---|
| 134 | r2 = G4UniformRand() * m;
|
|---|
| 135 | koe++;
|
|---|
| 136 | }
|
|---|
| 137 | while ( r1 * std::exp ( 2 * std::sqrt ( levelParam * ( xMax - r1 ) ) ) < r2 );
|
|---|
| 138 |
|
|---|
| 139 | // G4cout << "Q ch " << koe << G4endl;
|
|---|
| 140 | G4double kineticEnergy = r1 + getCoulomb(); // add coulomb potential;
|
|---|
| 141 |
|
|---|
| 142 | if ( verboseLevel >= 10 )
|
|---|
| 143 | G4cout << " G4BENeutronChannel : sampleKineticEnergy() " << G4endl
|
|---|
| 144 | << " kinetic n e = " << kineticEnergy << G4endl
|
|---|
| 145 | << " levelParam = " << levelParam << G4endl
|
|---|
| 146 | << " thresh= " << getThresh() << G4endl;
|
|---|
| 147 |
|
|---|
| 148 | return kineticEnergy;
|
|---|
| 149 | }
|
|---|
| 150 |
|
|---|
| 151 |
|
|---|
| 152 | G4double G4BEChargedChannel::coulombFactorForProton()
|
|---|
| 153 | {
|
|---|
| 154 | // Coefficient c_p:s for empirical cross section formula are
|
|---|
| 155 | // defined with the proton constant. See Dostrovsky, Phys. Rev.,
|
|---|
| 156 | // vol. 116, 1959.
|
|---|
| 157 | G4double t[7] = { 0.08 , 0 , -0.06 , -0.1 , -0.1 , -0.1 , -0.1 };
|
|---|
| 158 | G4int Z = nucleusZ - particleZ;
|
|---|
| 159 |
|
|---|
| 160 | if ( Z >= 70.0 ) return t[6];
|
|---|
| 161 | if ( Z <= 10.0 ) return t[0];
|
|---|
| 162 |
|
|---|
| 163 | // Linear interpolation
|
|---|
| 164 | G4int n = G4int( 0.1 * Z + 1.0 );
|
|---|
| 165 | G4float x = ( 10 * n - Z ) * 0.1;
|
|---|
| 166 | G4double ret_val = x * t[n - 2] + ( 1.0 - x ) * t[n-1];
|
|---|
| 167 |
|
|---|
| 168 | return ret_val;
|
|---|
| 169 | }
|
|---|
| 170 |
|
|---|
| 171 |
|
|---|
| 172 | G4double G4BEChargedChannel::qmFactorForProton()
|
|---|
| 173 | {
|
|---|
| 174 | // Coefficient k_p for empirical cross section formula are defined
|
|---|
| 175 | // with the proton constant. See Dostrovsky, Phys. Rev., vol. 116,
|
|---|
| 176 | // 1959
|
|---|
| 177 | G4double t[7] = { 0.36, 0.51, 0.60, 0.66, 0.68, 0.69, 0.69 };
|
|---|
| 178 | G4int Z = nucleusZ - particleZ;
|
|---|
| 179 |
|
|---|
| 180 | if ( Z >= 70.0 ) return t[6];
|
|---|
| 181 | if ( Z <= 10.0 ) return t[0];
|
|---|
| 182 |
|
|---|
| 183 | // Linear interpolation
|
|---|
| 184 | G4int n = G4int( 0.1 * Z + 1.0 );
|
|---|
| 185 | G4float x = ( 10 * n - Z ) * 0.1;
|
|---|
| 186 | return x * t[n - 2] + ( 1.0 - x ) * t[n-1];
|
|---|
| 187 | }
|
|---|
| 188 |
|
|---|
| 189 |
|
|---|
| 190 | G4double G4BEChargedChannel::qmFactorForAlpha()
|
|---|
| 191 | {
|
|---|
| 192 | // Coefficient k_alpha for empirical cross section formula presented
|
|---|
| 193 | // in Dostrovsky, Phys. Rev., vol. 116, 1959
|
|---|
| 194 |
|
|---|
| 195 | G4double t[7] = { 0.77, 0.81, 0.85, 0.89, 0.93, 0.97, 1.00 };
|
|---|
| 196 | G4int Z = nucleusZ - particleZ;
|
|---|
| 197 |
|
|---|
| 198 | if ( Z >= 70.0 ) return t[6];
|
|---|
| 199 | if ( Z <= 10.0 ) return t[0];
|
|---|
| 200 |
|
|---|
| 201 | // Linear interpolation
|
|---|
| 202 | G4int n = G4int( 0.1 * Z + 1.0 );
|
|---|
| 203 | G4float x = ( 10 * n - Z ) * 0.1;
|
|---|
| 204 | return x * t[n - 2] + ( 1.0 - x ) * t[n-1];
|
|---|
| 205 | }
|
|---|