source: trunk/source/processes/hadronic/models/cascade/evaporation/src/G4BEChargedChannel.cc@ 1199

Last change on this file since 1199 was 819, checked in by garnier, 17 years ago

import all except CVS

File size: 7.7 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// Implementation of the HETC88 code into Geant4.
28// Evaporation and De-excitation parts
29// T. Lampen, Helsinki Institute of Physics, May-2000
30
31#include "G4BEChargedChannel.hh"
32
33
34G4BEChargedChannel::G4BEChargedChannel()
35{
36 verboseLevel = 0;
37}
38
39
40G4BEChargedChannel::~G4BEChargedChannel()
41{
42}
43
44
45void G4BEChargedChannel::calculateProbability()
46{
47 G4int residualZ = nucleusZ - particleZ;
48 G4int residualA = nucleusA - particleA;
49
50// Check if nucleus is too small, if this evaporation channel
51// leads to an impossible residual nucleus or if there is no enough
52// energy.
53 if ( nucleusA < 2.0 * particleA ||
54 nucleusZ < 2.0 * particleZ ||
55 residualA <= residualZ ||
56 excitationEnergy - getThresh() - correction < 0 )
57 {
58 if ( verboseLevel >= 6 )
59 G4cout << "G4BEChargedChannel : calculateProbability for " << getName() << " = 0 " << G4endl;
60 emissionProbability = 0;
61 return;
62 }
63
64 // In HETC88 s-s0 was used in std::exp( s ), in which s0 was either 50 or
65 // max(s_i), where i goes over all channels.
66
67 G4double levelParam = getLevelDensityParameter();
68 G4double s = 2 * std::sqrt( levelParam * ( excitationEnergy - getThresh() - correction ) );
69 G4double constant = A / 2 * ( 2 * spin + 1 ) * ( 1 + coulombFactor() );
70 G4double eye1 = ( std::pow( s, 2. ) - 3 * s + 3 ) / ( 4 * std::pow( levelParam, 2. ) ) * std::exp( s );
71
72 emissionProbability = constant * std::pow( G4double(residualA), 0.6666666 ) * eye1;
73
74 if ( verboseLevel >= 6 )
75 G4cout << "G4BEChargedChannel : calculateProbability for " << getName() << G4endl
76 << " res A = " << residualA << G4endl
77 << " res Z = " << residualZ << G4endl
78 << " c*(c_i+1) = "<< constant << G4endl
79 << " qmfactor = "<< qmFactor() << G4endl
80 << " coulombfactor = "<< coulombFactor() << G4endl
81 << " E = " << excitationEnergy << G4endl
82 << " correction = " << correction << G4endl
83 << " eye1 = " << eye1 << G4endl
84 << " levelParam = " << levelParam << G4endl
85 << " thresh = " << getThresh() << G4endl
86 << " s = " << s << G4endl
87 << " probability = " << emissionProbability << G4endl;
88
89 return;
90}
91
92
93G4double G4BEChargedChannel::sampleKineticEnergy()
94{
95// G4double randExp1;
96// G4double randExp2;
97// G4double s;
98// G4double levelParam;
99// G4double kineticEnergyAv;
100// G4double kineticEnergy;
101
102// randExp1 = RandExponential::shoot( 1 );
103// randExp2 = RandExponential::shoot( 1 );
104// levelParam = getLevelDensityParameter();
105// s = 2 * std::sqrt( levelParam * ( excitationEnergy - getThresh() - correction ) );
106// kineticEnergyAv = 2 * ( std::pow( s, 3. ) - 6.0 * std::pow( s, 2. ) + 15.0 * s - 15.0 ) /
107// ( ( 2.0 * std::pow( s, 2. ) - 6.0 * s + 6.0 ) * levelParam );
108
109// kineticEnergy = 0.5 * ( randExp1 + randExp2 ) * kineticEnergyAv + getThresh() - getQ();
110
111// if ( verboseLevel >= 10 )
112// G4cout << " G4BEChargedChannel : sampleKineticEnergy() " << G4endl
113// << " kinetic e = " << kineticEnergy << G4endl
114// << " average = " << kineticEnergyAv << G4endl
115// << " s = " << s << G4endl
116// << " levelParam = " << levelParam << G4endl
117// << " randExp1 = " << randExp1 << G4endl
118// << " randExp2 = " << randExp2 << G4endl;
119
120 G4double levelParam;
121 levelParam = getLevelDensityParameter();
122
123 const G4double xMax = excitationEnergy - getThresh() - correction; // maximum number
124 const G4double xProb = ( - 1 + std::sqrt ( 1 + 4 * levelParam * xMax ) ) / ( 2 * levelParam ); // most probable value
125 const G4double m = xProb * std::exp ( 2 * std::sqrt ( levelParam * ( xMax - xProb ) ) ); // maximum value of P(x)
126
127 // Sample x according to density function P(x) with rejection method
128 G4double r1;
129 G4double r2;
130 G4int koe=0;
131 do
132 {
133 r1 = G4UniformRand() * xMax;
134 r2 = G4UniformRand() * m;
135 koe++;
136 }
137 while ( r1 * std::exp ( 2 * std::sqrt ( levelParam * ( xMax - r1 ) ) ) < r2 );
138
139// G4cout << "Q ch " << koe << G4endl;
140 G4double kineticEnergy = r1 + getCoulomb(); // add coulomb potential;
141
142 if ( verboseLevel >= 10 )
143 G4cout << " G4BENeutronChannel : sampleKineticEnergy() " << G4endl
144 << " kinetic n e = " << kineticEnergy << G4endl
145 << " levelParam = " << levelParam << G4endl
146 << " thresh= " << getThresh() << G4endl;
147
148 return kineticEnergy;
149}
150
151
152G4double G4BEChargedChannel::coulombFactorForProton()
153{
154 // Coefficient c_p:s for empirical cross section formula are
155 // defined with the proton constant. See Dostrovsky, Phys. Rev.,
156 // vol. 116, 1959.
157 G4double t[7] = { 0.08 , 0 , -0.06 , -0.1 , -0.1 , -0.1 , -0.1 };
158 G4int Z = nucleusZ - particleZ;
159
160 if ( Z >= 70.0 ) return t[6];
161 if ( Z <= 10.0 ) return t[0];
162
163 // Linear interpolation
164 G4int n = G4int( 0.1 * Z + 1.0 );
165 G4float x = ( 10 * n - Z ) * 0.1;
166 G4double ret_val = x * t[n - 2] + ( 1.0 - x ) * t[n-1];
167
168 return ret_val;
169}
170
171
172G4double G4BEChargedChannel::qmFactorForProton()
173{
174 // Coefficient k_p for empirical cross section formula are defined
175 // with the proton constant. See Dostrovsky, Phys. Rev., vol. 116,
176 // 1959
177 G4double t[7] = { 0.36, 0.51, 0.60, 0.66, 0.68, 0.69, 0.69 };
178 G4int Z = nucleusZ - particleZ;
179
180 if ( Z >= 70.0 ) return t[6];
181 if ( Z <= 10.0 ) return t[0];
182
183 // Linear interpolation
184 G4int n = G4int( 0.1 * Z + 1.0 );
185 G4float x = ( 10 * n - Z ) * 0.1;
186 return x * t[n - 2] + ( 1.0 - x ) * t[n-1];
187}
188
189
190G4double G4BEChargedChannel::qmFactorForAlpha()
191{
192// Coefficient k_alpha for empirical cross section formula presented
193// in Dostrovsky, Phys. Rev., vol. 116, 1959
194
195 G4double t[7] = { 0.77, 0.81, 0.85, 0.89, 0.93, 0.97, 1.00 };
196 G4int Z = nucleusZ - particleZ;
197
198 if ( Z >= 70.0 ) return t[6];
199 if ( Z <= 10.0 ) return t[0];
200
201 // Linear interpolation
202 G4int n = G4int( 0.1 * Z + 1.0 );
203 G4float x = ( 10 * n - Z ) * 0.1;
204 return x * t[n - 2] + ( 1.0 - x ) * t[n-1];
205}
Note: See TracBrowser for help on using the repository browser.