source: trunk/source/processes/hadronic/models/cascade/evaporation/src/G4BENeutronChannel.cc@ 1199

Last change on this file since 1199 was 819, checked in by garnier, 17 years ago

import all except CVS

File size: 7.3 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// Implementation of the HETC88 code into Geant4.
28// Evaporation and De-excitation parts
29// T. Lampen, Helsinki Institute of Physics, May-2000
30
31#include "globals.hh"
32#include "G4ios.hh"
33#include "Randomize.hh"
34#include "G4Neutron.hh"
35#include "G4Proton.hh"
36#include "G4Deuteron.hh"
37#include "G4Triton.hh"
38#include "G4Alpha.hh"
39#include "G4ParticleTable.hh"
40#include "G4Nucleus.hh"
41#include "G4BENeutronChannel.hh"
42
43
44G4BENeutronChannel::G4BENeutronChannel()
45{
46 name = "neutron";
47 particleA = 1;
48 particleZ = 0;
49 verboseLevel = 0;
50 rho = 0;
51}
52
53
54G4BENeutronChannel::~G4BENeutronChannel()
55{
56}
57
58
59void G4BENeutronChannel::calculateProbability()
60{
61 const G4int residualZ = nucleusZ - particleZ;
62 const G4int residualA = nucleusA - particleA;
63
64 if ( nucleusA < 2.0 * particleA ||
65 nucleusZ < 2.0 * particleZ ||
66 residualA <= residualZ ||
67 excitationEnergy - getThresh() - correction < 0 )
68 {
69 if ( verboseLevel >= 6 )
70 G4cout << "G4BENeutronChannel : calculateProbability = 0 " << G4endl;
71 emissionProbability = 0;
72 return;
73 }
74
75 // In HETC88 s-s0 was used in std::exp( s ), in which s0 was either 50 or
76 // max(s_i), where i goes over all channels.
77
78 const G4double levelParam = getLevelDensityParameter();
79
80 const G4double s = 2 * std::sqrt( levelParam * ( excitationEnergy - getThresh() - correction ) );
81 // const G4double temp = ( std::pow( s, 2. ) - 3 * s + 3 ) / ( 4 * std::pow( levelParam, 2. ) )
82 // + beta() * ( s - 1 ) / ( 2 * levelParam );
83 const G4double eye0 = std::exp( s ) * ( s - 1 ) / ( 2 * levelParam );
84 const G4double eye1 = ( std::pow( s, 2. ) - 3*s +3 ) * std::exp( s ) / ( 4 * std::pow( levelParam, 2. ) ) ;
85
86 emissionProbability = std::pow( G4double(residualA), 0.666666 ) * alpha() * ( eye1 + beta() * eye0 );
87
88 if ( verboseLevel >= 6 )
89 G4cout << "G4BENeutronChannel : calculateProbability " << G4endl
90 << " res A = " << residualA << G4endl
91 << " res Z = " << residualZ << G4endl
92 << " alpha = " << alpha() << G4endl
93 << " beta = " << beta() << G4endl
94 << " E = " << excitationEnergy << G4endl
95 << " correction = " << correction << G4endl
96 << " eye1 = " << eye1 << G4endl
97 << " eye0 = " << eye0 << G4endl
98 << " levelParam = " << levelParam << G4endl
99 << " thresh = " << getThresh() << G4endl
100 << " s = " << s << G4endl
101 << " probability = " << emissionProbability << G4endl;
102
103 return;
104}
105
106
107G4double G4BENeutronChannel::sampleKineticEnergy()
108{
109 // Samples the kinetic energy of the particle in CMS
110 //
111 // Algorithm used in HETC98
112 //
113// G4double e1;
114// G4double e2;
115// G4double s;
116// G4double levelParam;
117// G4double eye0;
118// G4double eye1;
119// G4double kineticEnergyAv;
120// G4double kineticEnergy;
121
122// e1 = RandExponential::shoot( 1 );
123// e2 = RandExponential::shoot( 1 );
124
125// levelParam = getLevelDensityParameter();
126// s = 2 * std::sqrt( levelParam * ( excitationEnergy - getThresh() - correction ) );
127// eye0 = 0.5 * ( s - 1 ) * std::exp( s ) / levelParam;
128// eye1 = ( std::pow( s, 2. ) - 3*s + 3 ) * std::exp( s ) / ( 4 * std::pow( levelParam, 2. ) );
129// kineticEnergyAv = 2 * ( std::pow( s, 3. ) - 6.0 * std::pow( s, 2. ) + 15.0 * s - 15.0 ) /
130// ( ( 2.0 * std::pow( s, 2. ) - 6.0 * s + 6.0 ) * levelParam );
131// kineticEnergyAv = ( kineticEnergyAv + beta() ) / ( 1.0 + beta() * eye0
132// / eye1 );
133
134// kineticEnergy = 0.5 * ( e1 + e2 ) * kineticEnergyAv + getThresh() - getQ();
135
136 ////////////////
137 // A random number is sampled from the density function
138 // P(x) = x * std::exp ( 2 std::sqrt ( a ( xMax - x ) ) ) [not normalized],
139 // x belongs to [ 0, xMax ]
140 // with the 'Hit or Miss' -method
141 // Kinetic energy is this energy scaled properly
142
143 G4double levelParam;
144 levelParam = getLevelDensityParameter();
145
146 const G4double xMax = excitationEnergy - getThresh() - correction + beta(); // maximum number
147 const G4double xProb = ( - 1 + std::sqrt ( 1 + 4 * levelParam * xMax ) ) / ( 2 * levelParam ); // most probable value
148 const G4double m = xProb * std::exp ( 2 * std::sqrt ( levelParam * ( xMax - xProb ) ) ); // maximum value of P(x)
149
150 // Sample x according to density function P(x) with rejection method
151 G4double r1;
152 G4double r2;
153 G4int koe=0;
154 do
155 {
156 r1 = beta() + G4UniformRand() * ( xMax - beta() );
157 r2 = G4UniformRand() * m;
158 koe++;
159 }
160 while ( r1 * std::exp ( 2 * std::sqrt ( levelParam * ( xMax - r1 ) ) ) < r2 );
161
162// G4cout << koe << G4endl;
163 G4double kineticEnergy = r1 - beta();
164
165 if ( verboseLevel >= 10 )
166 G4cout << " G4BENeutronChannel : sampleKineticEnergy() " << G4endl
167 << " kinetic n e = " << kineticEnergy << G4endl
168 << " levelParam = " << levelParam << G4endl
169 << " thresh= " << getThresh() << G4endl
170 << " beta= " << beta() << G4endl;
171
172 return kineticEnergy;
173}
174
175
176G4DynamicParticle * G4BENeutronChannel::emit()
177{
178 G4double u;
179 G4double v;
180 G4double w;
181 G4DynamicParticle * pParticle = new G4DynamicParticle;
182
183 pParticle -> SetDefinition( G4Neutron::Neutron() );
184 pParticle -> SetKineticEnergy( sampleKineticEnergy() );
185 isotropicCosines( u, v, w );
186 pParticle -> SetMomentumDirection( u , v , w );
187
188 return pParticle;
189}
190
191
192G4double G4BENeutronChannel::alpha()
193{
194 const G4double residualA = nucleusA - particleA;
195 return 0.76 + 1.93 * std::pow( residualA, -0.33333 );
196}
197
198
199G4double G4BENeutronChannel::beta()
200{
201 G4double residualA = nucleusA - particleA;
202 return ( 1.66 * std::pow ( residualA, -0.66666 ) - 0.05 )/alpha()*MeV;
203}
204
Note: See TracBrowser for help on using the repository browser.