source: trunk/source/processes/hadronic/models/chiral_inv_phase_space/cross_sections/src/G4QHyperonPlusElasticCrossSection.cc @ 1316

Last change on this file since 1316 was 1316, checked in by garnier, 14 years ago

update geant4-09-04-beta-cand-01 interfaces-V09-03-09 vis-V09-03-08

File size: 51.7 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer                                           *
4// *                                                                  *
5// * The  Geant4 software  is  copyright of the Copyright Holders  of *
6// * the Geant4 Collaboration.  It is provided  under  the terms  and *
7// * conditions of the Geant4 Software License,  included in the file *
8// * LICENSE and available at  http://cern.ch/geant4/license .  These *
9// * include a list of copyright holders.                             *
10// *                                                                  *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work  make  any representation or  warranty, express or implied, *
14// * regarding  this  software system or assume any liability for its *
15// * use.  Please see the license in the file  LICENSE  and URL above *
16// * for the full disclaimer and the limitation of liability.         *
17// *                                                                  *
18// * This  code  implementation is the result of  the  scientific and *
19// * technical work of the GEANT4 collaboration.                      *
20// * By using,  copying,  modifying or  distributing the software (or *
21// * any work based  on the software)  you  agree  to acknowledge its *
22// * use  in  resulting  scientific  publications,  and indicate your *
23// * acceptance of all terms of the Geant4 Software license.          *
24// ********************************************************************
25//
26//
27// $Id: G4QHyperonPlusElasticCrossSection.cc,v 1.1 2010/02/16 07:53:05 mkossov Exp $
28// GEANT4 tag $Name: geant4-09-04-beta-cand-01 $
29//
30//
31// G4 Physics class: G4QHyperonPlusElasticCrossSection for pA elastic cross sections
32// Created: M.V. Kossov, CERN/ITEP(Moscow), 5-Feb-2010
33// The last update: M.V. Kossov, CERN/ITEP (Moscow) 5-Feb-2010
34//
35//================================================================================
36// Short description: Interaction cross-sections for the G4QElastic process
37// -------------------------------------------------------------------------------
38
39//#define debug
40//#define isodebug
41//#define pdebug
42//#define ppdebug
43//#define tdebug
44//#define sdebug
45
46#include "G4QHyperonPlusElasticCrossSection.hh"
47
48// Initialization of the static parameters
49const G4int G4QHyperonPlusElasticCrossSection::nPoints=128;//#ofPt in AMDB table(>anyPar)/D
50const G4int G4QHyperonPlusElasticCrossSection::nLast=nPoints-1;// theLastElement inTable /D
51G4double  G4QHyperonPlusElasticCrossSection::lPMin=-8.;  //Min tabulatedLogarithmMomentum/D
52G4double  G4QHyperonPlusElasticCrossSection::lPMax= 8.;  //Max tabulatedLogarithmMomentum/D
53G4double  G4QHyperonPlusElasticCrossSection::dlnP=(lPMax-lPMin)/nLast;// LogStep inTable /D
54G4bool    G4QHyperonPlusElasticCrossSection::onlyCS=true;//Flag toCalculOnlyCS(not Si/Bi)/L
55G4double  G4QHyperonPlusElasticCrossSection::lastSIG=0.; //Last calculated cross section /L
56G4double  G4QHyperonPlusElasticCrossSection::lastLP=-10.;//LastLog(mom_of IncidentHadron)/L
57G4double  G4QHyperonPlusElasticCrossSection::lastTM=0.; //Last t_maximum                /L
58G4double  G4QHyperonPlusElasticCrossSection::theSS=0.;  //TheLastSqSlope of 1st difr.Max/L
59G4double  G4QHyperonPlusElasticCrossSection::theS1=0.;  //TheLastMantissa of 1st difrMax/L
60G4double  G4QHyperonPlusElasticCrossSection::theB1=0.;  //TheLastSlope of 1st difructMax/L
61G4double  G4QHyperonPlusElasticCrossSection::theS2=0.;  //TheLastMantissa of 2nd difrMax/L
62G4double  G4QHyperonPlusElasticCrossSection::theB2=0.;  //TheLastSlope of 2nd difructMax/L
63G4double  G4QHyperonPlusElasticCrossSection::theS3=0.;  //TheLastMantissa of 3d difr.Max/L
64G4double  G4QHyperonPlusElasticCrossSection::theB3=0.;  //TheLastSlope of 3d difruct.Max/L
65G4double  G4QHyperonPlusElasticCrossSection::theS4=0.;  //TheLastMantissa of 4th difrMax/L
66G4double  G4QHyperonPlusElasticCrossSection::theB4=0.;  //TheLastSlope of 4th difructMax/L
67G4int     G4QHyperonPlusElasticCrossSection::lastTZ=0;  // Last atomic number of theTarget
68G4int     G4QHyperonPlusElasticCrossSection::lastTN=0;  // Last # of neutrons in theTarget
69G4double  G4QHyperonPlusElasticCrossSection::lastPIN=0.;// Last initialized max momentum
70G4double* G4QHyperonPlusElasticCrossSection::lastCST=0; // Elastic cross-section table
71G4double* G4QHyperonPlusElasticCrossSection::lastPAR=0; // ParametersForFunctionCalculation
72G4double* G4QHyperonPlusElasticCrossSection::lastSST=0; // E-dep ofSqardSlope of 1st difMax
73G4double* G4QHyperonPlusElasticCrossSection::lastS1T=0; // E-dep of mantissa of 1st dif.Max
74G4double* G4QHyperonPlusElasticCrossSection::lastB1T=0; // E-dep of the slope of 1st difMax
75G4double* G4QHyperonPlusElasticCrossSection::lastS2T=0; // E-dep of mantissa of 2nd difrMax
76G4double* G4QHyperonPlusElasticCrossSection::lastB2T=0; // E-dep of the slope of 2nd difMax
77G4double* G4QHyperonPlusElasticCrossSection::lastS3T=0; // E-dep of mantissa of 3d difr.Max
78G4double* G4QHyperonPlusElasticCrossSection::lastB3T=0; // E-dep of the slope of 3d difrMax
79G4double* G4QHyperonPlusElasticCrossSection::lastS4T=0; // E-dep of mantissa of 4th difrMax
80G4double* G4QHyperonPlusElasticCrossSection::lastB4T=0; // E-dep of the slope of 4th difMax
81G4int     G4QHyperonPlusElasticCrossSection::lastN=0;   // The last N of calculated nucleus
82G4int     G4QHyperonPlusElasticCrossSection::lastZ=0;   // The last Z of calculated nucleus
83G4double  G4QHyperonPlusElasticCrossSection::lastP=0.;  // LastUsed inCrossSection Momentum
84G4double  G4QHyperonPlusElasticCrossSection::lastTH=0.; // Last threshold momentum
85G4double  G4QHyperonPlusElasticCrossSection::lastCS=0.; // Last value of the Cross Section
86G4int     G4QHyperonPlusElasticCrossSection::lastI=0;   // The last position in the DAMDB
87
88std::vector<G4double*> G4QHyperonPlusElasticCrossSection::PAR;//Vector ofParsForFunctCalcul
89std::vector<G4double*> G4QHyperonPlusElasticCrossSection::CST;//Vector ofCrossSection table
90std::vector<G4double*> G4QHyperonPlusElasticCrossSection::SST;//Vector ofThe1st SquardSlope
91std::vector<G4double*> G4QHyperonPlusElasticCrossSection::S1T;//Vector of the 1st mantissa
92std::vector<G4double*> G4QHyperonPlusElasticCrossSection::B1T;//Vector of the1st slope
93std::vector<G4double*> G4QHyperonPlusElasticCrossSection::S2T;//Vector of the2nd mantissa
94std::vector<G4double*> G4QHyperonPlusElasticCrossSection::B2T;//Vector of the2nd slope
95std::vector<G4double*> G4QHyperonPlusElasticCrossSection::S3T;//Vector of the3d mantissa
96std::vector<G4double*> G4QHyperonPlusElasticCrossSection::B3T;//Vector of the3d slope
97std::vector<G4double*> G4QHyperonPlusElasticCrossSection::S4T;//Vector ofThe4th mantissa(g)
98std::vector<G4double*> G4QHyperonPlusElasticCrossSection::B4T;//Vector ofThe4th slope(glor)
99
100G4QHyperonPlusElasticCrossSection::G4QHyperonPlusElasticCrossSection()
101{
102}
103
104G4QHyperonPlusElasticCrossSection::~G4QHyperonPlusElasticCrossSection()
105{
106  std::vector<G4double*>::iterator pos;
107  for (pos=CST.begin(); pos<CST.end(); pos++)
108  { delete [] *pos; }
109  CST.clear();
110  for (pos=PAR.begin(); pos<PAR.end(); pos++)
111  { delete [] *pos; }
112  PAR.clear();
113  for (pos=SST.begin(); pos<SST.end(); pos++)
114  { delete [] *pos; }
115  SST.clear();
116  for (pos=S1T.begin(); pos<S1T.end(); pos++)
117  { delete [] *pos; }
118  S1T.clear();
119  for (pos=B1T.begin(); pos<B1T.end(); pos++)
120  { delete [] *pos; }
121  B1T.clear();
122  for (pos=S2T.begin(); pos<S2T.end(); pos++)
123  { delete [] *pos; }
124  S2T.clear();
125  for (pos=B2T.begin(); pos<B2T.end(); pos++)
126  { delete [] *pos; }
127  B2T.clear();
128  for (pos=S3T.begin(); pos<S3T.end(); pos++)
129  { delete [] *pos; }
130  S3T.clear();
131  for (pos=B3T.begin(); pos<B3T.end(); pos++)
132  { delete [] *pos; }
133  B3T.clear();
134  for (pos=S4T.begin(); pos<S4T.end(); pos++)
135  { delete [] *pos; }
136  S4T.clear();
137  for (pos=B4T.begin(); pos<B4T.end(); pos++)
138  { delete [] *pos; }
139  B4T.clear();
140}
141
142// Returns Pointer to the G4VQCrossSection class
143G4VQCrossSection* G4QHyperonPlusElasticCrossSection::GetPointer()
144{
145  static G4QHyperonPlusElasticCrossSection theCrossSection;//StaticBody of the QElCrossSect
146  return &theCrossSection;
147}
148
149// The main member function giving the collision cross section (P is in IU, CS is in mb)
150// Make pMom in independent units ! (Now it is MeV)
151G4double G4QHyperonPlusElasticCrossSection::GetCrossSection(G4bool fCS, G4double pMom,
152                                                         G4int tgZ, G4int tgN, G4int pPDG)
153{
154  static std::vector <G4int>    colN;  // Vector of N for calculated nuclei (isotops)
155  static std::vector <G4int>    colZ;  // Vector of Z for calculated nuclei (isotops)
156  static std::vector <G4double> colP;  // Vector of last momenta for the reaction
157  static std::vector <G4double> colTH; // Vector of energy thresholds for the reaction
158  static std::vector <G4double> colCS; // Vector of last cross sections for the reaction
159  // ***---*** End of the mandatory Static Definitions of the Associative Memory ***---***
160  G4double pEn=pMom;
161  onlyCS=fCS;
162#ifdef pdebug
163  G4cout<<"G4QHypPlElCS::GetCS:>>> f="<<fCS<<", p="<<pMom<<", Z="<<tgZ<<"("<<lastZ<<") ,N="
164        <<tgN<<"("<<lastN<<"), T="<<pEn<<"("<<lastTH<<")"<<",Sz="<<colN.size()<<G4endl;
165  //CalculateCrossSection(fCS,-27,j,pPDG,lastZ,lastN,pMom); // DUMMY TEST
166#endif
167  if(pPDG!=3222)
168  {
169    G4cout<<"*Warning*G4QHyperonPlusElaCS::GetCS:*>Found pPDG="<<pPDG<<" ==> CS=0"<<G4endl;
170    //CalculateCrossSection(fCS,-27,j,pPDG,lastZ,lastN,pMom); // DUMMY TEST
171    return 0.;                         // projectile PDG=0 is a mistake (?!) @@
172  }
173  G4bool in=false;                   // By default the isotope must be found in the AMDB
174  lastP   = 0.;                      // New momentum history (nothing to compare with)
175  lastN   = tgN;                     // The last N of the calculated nucleus
176  lastZ   = tgZ;                     // The last Z of the calculated nucleus
177  lastI   = colN.size();             // Size of the Associative Memory DB in the heap
178  if(lastI) for(G4int i=0; i<lastI; i++) // Loop over proj/tgZ/tgN lines of DB
179  {                                  // The nucleus with projPDG is found in AMDB
180    if(colN[i]==tgN && colZ[i]==tgZ) // Isotope is foind in AMDB
181    {
182      lastI=i;
183      lastTH =colTH[i];              // Last THreshold (A-dependent)
184#ifdef pdebug
185      G4cout<<"G4QHPElCS::GetCS:*Found* P="<<pMom<<",Threshold="<<lastTH<<",i="<<i<<G4endl;
186      //CalculateCrossSection(fCS,-27,i,pPDG,lastZ,lastN,pMom); // DUMMY TEST
187#endif
188      if(pEn<=lastTH)
189      {
190#ifdef pdebug
191        G4cout<<"G4QHPElCS::GetCS:Found T="<<pEn<<" < Threshold="<<lastTH<<",CS=0"<<G4endl;
192        //CalculateCrossSection(fCS,-27,i,pPDG,lastZ,lastN,pMom); // DUMMY TEST
193#endif
194        return 0.;                   // Energy is below the Threshold value
195      }
196      lastP  =colP [i];              // Last Momentum  (A-dependent)
197      lastCS =colCS[i];              // Last CrossSect (A-dependent)
198      //  if(std::fabs(lastP/pMom-1.)<tolerance) //VI (do not use tolerance)
199      if(lastP == pMom)              // Do not recalculate
200      {
201#ifdef pdebug
202        G4cout<<"G4QHyperonPlusElastCS::GetCS: P="<<pMom<<",CS="<<lastCS*millibarn<<G4endl;
203#endif
204        CalculateCrossSection(fCS,-1,i,pPDG,lastZ,lastN,pMom); // Update param's only
205        return lastCS*millibarn;     // Use theLastCS
206      }
207      in = true;                       // This is the case when the isotop is found in DB
208      // Momentum pMom is in IU ! @@ Units
209#ifdef pdebug
210      G4cout<<"G4QHPElCS::G:UpdateDB P="<<pMom<<",f="<<fCS<<",I="<<lastI<<",i="<<i<<G4endl;
211#endif
212      lastCS=CalculateCrossSection(fCS,-1,i,pPDG,lastZ,lastN,pMom); // read & update
213#ifdef pdebug
214      G4cout<<"G4QHyperonPlusElCS::GetCrosSec:**>New(inDB) Calculated CS="<<lastCS<<G4endl;
215      //CalculateCrossSection(fCS,-27,i,pPDG,lastZ,lastN,pMom); // DUMMY TEST
216#endif
217      if(lastCS<=0. && pEn>lastTH)    // Correct the threshold
218      {
219#ifdef pdebug
220        G4cout<<"G4QHyperonPlusElCS::GetCS:T="<<pEn<<"(CS=0) > Threshold="<<lastTH<<G4endl;
221#endif
222        lastTH=pEn;
223      }
224      break;                           // Go out of the LOOP with found lastI
225    }
226#ifdef pdebug
227    G4cout<<"---G4QHyperonPlusElasticCrossSection::GetCrosSec:pPDG="<<pPDG<<",i="<<i<<",N="
228          <<colN[i]<<",Z["<<i<<"]="<<colZ[i]<<G4endl;
229    //CalculateCrossSection(fCS,-27,i,pPDG,lastZ,lastN,pMom); // DUMMY TEST
230#endif
231  } // End of attampt to find the nucleus in DB
232  if(!in)                            // This nucleus has not been calculated previously
233  {
234#ifdef pdebug
235    G4cout<<"G4QHyperonPlusElCS::GetCS:CNewP="<<pMom<<",f="<<fCS<<",lastI="<<lastI<<G4endl;
236#endif
237    //!!The slave functions must provide cross-sections in millibarns (mb) !! (not in IU)
238    lastCS=CalculateCrossSection(fCS,0,lastI,pPDG,lastZ,lastN,pMom);//calculate&create
239    if(lastCS<=0.)
240    {
241      lastTH = ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
242#ifdef pdebug
243      G4cout<<"G4QHyperonPlusElasticCrossSection::GCS:NewThr="<<lastTH<<",T="<<pEn<<G4endl;
244#endif
245      if(pEn>lastTH)
246      {
247#ifdef pdebug
248        G4cout<<"G4QHyperonPlusElCS::GCS:1st T="<<pEn<<"(CS=0)>Threshold="<<lastTH<<G4endl;
249#endif
250        lastTH=pEn;
251      }
252    }
253#ifdef pdebug
254    G4cout<<"G4QHyperonPlusElCS::GetCS:NCS="<<lastCS<<",lZ="<<lastN<<",lN="<<lastZ<<G4endl;
255    //CalculateCrossSection(fCS,-27,lastI,pPDG,lastZ,lastN,pMom); // DUMMY TEST
256#endif
257    colN.push_back(tgN);
258    colZ.push_back(tgZ);
259    colP.push_back(pMom);
260    colTH.push_back(lastTH);
261    colCS.push_back(lastCS);
262#ifdef pdebug
263    G4cout<<"G4QHPElCS::GetCS:1st,P="<<pMom<<"(MeV),CS="<<lastCS*millibarn<<"(mb)"<<G4endl;
264    //CalculateCrossSection(fCS,-27,lastI,pPDG,lastZ,lastN,pMom); // DUMMY TEST
265#endif
266    return lastCS*millibarn;
267  } // End of creation of the new set of parameters
268  else
269  {
270#ifdef pdebug
271    G4cout<<"G4QHyperonPlusElasticCrossSection::GetCS: Update lastI="<<lastI<<G4endl;
272#endif
273    colP[lastI]=pMom;
274    colCS[lastI]=lastCS;
275  }
276#ifdef pdebug
277  G4cout<<"G4QHPElCS::GetCSec:End,P="<<pMom<<"(MeV),CS="<<lastCS*millibarn<<"(mb)"<<G4endl;
278  //CalculateCrossSection(fCS,-27,lastI,pPDG,lastZ,lastN,pMom); // DUMMY TEST
279  G4cout<<"G4QHyperonPlusElasticCrossSection::GetCrosSec:**End**, onlyCS="<<onlyCS<<G4endl;
280#endif
281  return lastCS*millibarn;
282}
283
284// Calculation of total elastic cross section (p in IU, CS in mb) @@ Units (?)
285// F=0 - create AMDB, F=-1 - read&update AMDB, F=1 - update AMDB (sinchro with higher AMDB)
286G4double G4QHyperonPlusElasticCrossSection::CalculateCrossSection(G4bool CS, G4int F,
287                                    G4int I, G4int PDG, G4int tgZ, G4int tgN, G4double pIU)
288{
289  // *** Begin of Associative Memory DB for acceleration of the cross section calculations
290  static std::vector <G4double>  PIN;   // Vector of max initialized log(P) in the table
291  // *** End of Static Definitions (Associative Memory Data Base) ***
292  G4double pMom=pIU/GeV;                // All calculations are in GeV
293  onlyCS=CS;                            // Flag to calculate only CS (not Si/Bi)
294#ifdef pdebug
295  G4cout<<"G4QHyperonPlusElasticCS::CalcCS: onlyCS="<<onlyCS<<",F="<<F<<",p="<<pIU<<G4endl;
296#endif
297  lastLP=std::log(pMom);                // Make a logarithm of the momentum for calculation
298  if(F)                                 // This isotope was found in AMDB =>RETRIEVE/UPDATE
299  {
300    if(F<0)                             // the AMDB must be loded
301    {
302      lastPIN = PIN[I];                 // Max log(P) initialised for this table set
303      lastPAR = PAR[I];                 // Pointer to the parameter set
304      lastCST = CST[I];                 // Pointer to the total sross-section table
305      lastSST = SST[I];                 // Pointer to the first squared slope
306      lastS1T = S1T[I];                 // Pointer to the first mantissa
307      lastB1T = B1T[I];                 // Pointer to the first slope
308      lastS2T = S2T[I];                 // Pointer to the second mantissa
309      lastB2T = B2T[I];                 // Pointer to the second slope
310      lastS3T = S3T[I];                 // Pointer to the third mantissa
311      lastB3T = B3T[I];                 // Pointer to the rhird slope
312      lastS4T = S4T[I];                 // Pointer to the 4-th mantissa
313      lastB4T = B4T[I];                 // Pointer to the 4-th slope
314#ifdef pdebug
315      G4cout<<"G4QHyperonPlusElCS::CalCS:DB updated for I="<<I<<",*,PIN4="<<PIN[4]<<G4endl;
316#endif
317    }
318#ifdef pdebug
319    G4cout<<"G4QHyperonPlusElasticCS::CalcCS:*read*,LP="<<lastLP<<",PIN="<<lastPIN<<G4endl;
320#endif
321    if(lastLP>lastPIN && lastLP<lPMax)
322    {
323      lastPIN=GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);// Can update upper logP-Limit in tabs
324#ifdef pdebug
325      G4cout<<"G4QHPElCS::CalcCS:updated(I),LP="<<lastLP<<"<IN["<<I<<"]="<<lastPIN<<G4endl;
326#endif
327      PIN[I]=lastPIN;                   // Remember the new P-Limit of the tables
328    }
329  }
330  else                                  // This isotope wasn't initialized => CREATE
331  {
332    lastPAR = new G4double[nPoints];    // Allocate memory for parameters of CS function
333    lastPAR[nLast]=0;                   // Initialization for VALGRIND
334    lastCST = new G4double[nPoints];    // Allocate memory for Tabulated CS function   
335    lastSST = new G4double[nPoints];    // Allocate memory for Tabulated first sqaredSlope
336    lastS1T = new G4double[nPoints];    // Allocate memory for Tabulated first mantissa
337    lastB1T = new G4double[nPoints];    // Allocate memory for Tabulated first slope   
338    lastS2T = new G4double[nPoints];    // Allocate memory for Tabulated second mantissa
339    lastB2T = new G4double[nPoints];    // Allocate memory for Tabulated second slope   
340    lastS3T = new G4double[nPoints];    // Allocate memory for Tabulated third mantissa
341    lastB3T = new G4double[nPoints];    // Allocate memory for Tabulated third slope   
342    lastS4T = new G4double[nPoints];    // Allocate memory for Tabulated 4-th mantissa
343    lastB4T = new G4double[nPoints];    // Allocate memory for Tabulated 4-th slope   
344#ifdef pdebug
345    G4cout<<"G4QHyperonPlusElasticCS::CalcCS:*ini*,lstLP="<<lastLP<<",min="<<lPMin<<G4endl;
346#endif
347    lastPIN = GetPTables(lastLP,lPMin,PDG,tgZ,tgN); // Returns the new P-limit for tables
348#ifdef pdebug
349    G4cout<<"G4QHyPlElCS::CCS:i,Z="<<tgZ<<",N="<<tgN<<",PDG="<<PDG<<",LP"<<lastPIN<<G4endl;
350#endif
351    PIN.push_back(lastPIN);             // Fill parameters of CS function to AMDB
352    PAR.push_back(lastPAR);             // Fill parameters of CS function to AMDB
353    CST.push_back(lastCST);             // Fill Tabulated CS function to AMDB   
354    SST.push_back(lastSST);             // Fill Tabulated first sq.slope to AMDB
355    S1T.push_back(lastS1T);             // Fill Tabulated first mantissa to AMDB
356    B1T.push_back(lastB1T);             // Fill Tabulated first slope to AMDB   
357    S2T.push_back(lastS2T);             // Fill Tabulated second mantissa to AMDB
358    B2T.push_back(lastB2T);             // Fill Tabulated second slope to AMDB   
359    S3T.push_back(lastS3T);             // Fill Tabulated third mantissa to AMDB
360    B3T.push_back(lastB3T);             // Fill Tabulated third slope to AMDB   
361    S4T.push_back(lastS4T);             // Fill Tabulated 4-th mantissa to AMDB
362    B4T.push_back(lastB4T);             // Fill Tabulated 4-th slope to AMDB   
363  } // End of creation/update of the new set of parameters and tables
364  // ============= NOW Update (if necessary) and Calculate the Cross Section ===========
365#ifdef pdebug
366  G4cout<<"G4QHPElCS::CalcCS:?update?,LP="<<lastLP<<",IN="<<lastPIN<<",ML="<<lPMax<<G4endl;
367#endif
368  if(lastLP>lastPIN && lastLP<lPMax)
369  {
370    lastPIN = GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);
371#ifdef pdebug
372    G4cout<<"G4QHyperonPlusElCS::CalcCS:*updated(O)*,LP="<<lastLP<<"<IN="<<lastPIN<<G4endl;
373#endif
374  }
375#ifdef pdebug
376  G4cout<<"G4QHyPlElCS::CalcCS:lastLP="<<lastLP<<",lPM="<<lPMin<<",lPIN="<<lastPIN<<G4endl;
377#endif
378  if(!onlyCS) lastTM=GetQ2max(PDG, tgZ, tgN, pMom); // Calculate (-t)_max=Q2_max (GeV2)
379#ifdef pdebug
380  G4cout<<"G4QHyPlElCrosSec::CalcCS: oCS="<<onlyCS<<",-t="<<lastTM<<", p="<<lastLP<<G4endl;
381#endif
382  if(lastLP>lPMin && lastLP<=lastPIN)   // Linear fit is made using precalculated tables
383  {
384    if(lastLP==lastPIN)
385    {
386      G4double shift=(lastLP-lPMin)/dlnP+.000001; // Log distance from lPMin
387      G4int    blast=static_cast<int>(shift); // this is a bin number of the lower edge (0)
388      if(blast<0||blast>=nLast) G4cout<<"G4QHyPlElCS::CCS:b="<<blast<<",n="<<nLast<<G4endl;
389      lastSIG = lastCST[blast];
390      if(!onlyCS)                       // Skip the differential cross-section parameters
391      {
392        theSS  = lastSST[blast];
393        theS1  = lastS1T[blast];
394        theB1  = lastB1T[blast];
395        theS2  = lastS2T[blast];
396        theB2  = lastB2T[blast];
397        theS3  = lastS3T[blast];
398        theB3  = lastB3T[blast];
399        theS4  = lastS4T[blast];
400        theB4  = lastB4T[blast];
401      }
402#ifdef pdebug
403      G4cout<<"G4QHyperonPlusElasticCS::CalculateCS:(E) S1="<<theS1<<",B1="<<theB1<<G4endl;
404#endif
405    }
406    else
407    {
408      G4double shift=(lastLP-lPMin)/dlnP;        // a shift from the beginning of the table
409      G4int    blast=static_cast<int>(shift);    // the lower bin number
410      if(blast<0)   blast=0;
411      if(blast>=nLast) blast=nLast-1;            // low edge of the last bin
412      shift-=blast;                              // step inside the unit bin
413      G4int lastL=blast+1;                       // the upper bin number
414      G4double SIGL=lastCST[blast];              // the basic value of the cross-section
415      lastSIG= SIGL+shift*(lastCST[lastL]-SIGL); // calculated total elastic cross-section
416#ifdef pdebug
417      G4cout<<"G4QHyperonPlusElasticCrossSection::CalcCrossSection:Sig="<<lastSIG<<",P="
418            <<pMom<<",Z="<<tgZ<<",N="<<tgN<<",PDG="<<PDG<<",onlyCS="<<onlyCS<<G4endl;
419#endif
420      if(!onlyCS)                       // Skip the differential cross-section parameters
421      {
422        G4double SSTL=lastSST[blast];           // the low bin of the first squared slope
423        theSS=SSTL+shift*(lastSST[lastL]-SSTL); // the basic value of the first sq.slope
424        G4double S1TL=lastS1T[blast];           // the low bin of the first mantissa
425        theS1=S1TL+shift*(lastS1T[lastL]-S1TL); // the basic value of the first mantissa
426        G4double B1TL=lastB1T[blast];           // the low bin of the first slope
427#ifdef pdebug
428        G4cout<<"G4QHyperonPlusElasticCS::CalcCrossSect: b="<<blast<<", ls="<<lastL<<",SL="
429              <<S1TL<<",SU="<<lastS1T[lastL]<<",BL="<<B1TL<<",BU="<<lastB1T[lastL]<<G4endl;
430#endif
431        theB1=B1TL+shift*(lastB1T[lastL]-B1TL); // the basic value of the first slope
432        G4double S2TL=lastS2T[blast];           // the low bin of the second mantissa
433        theS2=S2TL+shift*(lastS2T[lastL]-S2TL); // the basic value of the second mantissa
434        G4double B2TL=lastB2T[blast];           // the low bin of the second slope
435        theB2=B2TL+shift*(lastB2T[lastL]-B2TL); // the basic value of the second slope
436        G4double S3TL=lastS3T[blast];           // the low bin of the third mantissa
437        theS3=S3TL+shift*(lastS3T[lastL]-S3TL); // the basic value of the third mantissa
438#ifdef pdebug
439        G4cout<<"G4QHyperonPlusElasticCrossSection::CalcCS: s3l="<<S3TL<<", sh3="<<shift
440              <<", s3h="<<lastS3T[lastL]<<", b="<<blast<<", l="<<lastL<<G4endl;
441#endif
442        G4double B3TL=lastB3T[blast];           // the low bin of the third slope
443        theB3=B3TL+shift*(lastB3T[lastL]-B3TL); // the basic value of the third slope
444        G4double S4TL=lastS4T[blast];           // the low bin of the 4-th mantissa
445        theS4=S4TL+shift*(lastS4T[lastL]-S4TL); // the basic value of the 4-th mantissa
446#ifdef pdebug
447        G4cout<<"G4QHyperonPlusElasticCrossSection::CalcCS: s4l="<<S4TL<<", sh4="<<shift
448              <<",s4h="<<lastS4T[lastL]<<",b="<<blast<<",l="<<lastL<<G4endl;
449#endif
450        G4double B4TL=lastB4T[blast];           // the low bin of the 4-th slope
451        theB4=B4TL+shift*(lastB4T[lastL]-B4TL); // the basic value of the 4-th slope
452      }
453#ifdef pdebug
454      G4cout<<"G4QHyperonPlusElasticCS::CalculateCS:(I) S1="<<theS1<<",B1="<<theB1<<G4endl;
455#endif
456    }
457  }
458  else lastSIG=GetTabValues(lastLP, PDG, tgZ, tgN); // Direct calculation beyond the table
459  if(lastSIG<0.) lastSIG = 0.;                   // @@ a Warning print can be added
460#ifdef pdebug
461  G4cout<<"G4QHyperonPlusElasticCrossSection::CalculateCS: END, onlyCS="<<onlyCS<<G4endl;
462#endif
463  return lastSIG;
464}
465
466// It has parameter sets for all tZ/tN/PDG, using them the tables can be created/updated
467G4double G4QHyperonPlusElasticCrossSection::GetPTables(G4double LP,G4double ILP, G4int PDG,
468                                                       G4int tgZ, G4int tgN)
469{
470  // @@ At present all nA==pA ---------> Each neucleus can have not more than 51 parameters
471  static const G4double pwd=2727;
472  const G4int n_hypel=33;                // #of parameters for pp-elastic (<nPoints=128)
473  //                        -0- -1- -2-  -3-  -4- -5-  -6--7--8--9--10--11--12-13--14-
474  G4double hyp_el[n_hypel]={1.,.002,.12,.0557,3.5,6.72,99.,2.,2.,5.,74.,3.,3.4,.2,.17,
475                            .001,8.,.055,3.64,5.e-5,4000.,1500.,.46,1.2e6,3.5e6,5.e-5,
476                            1.e10,8.5e8,1.e10,1.1,3.4e6,6.8e6,0.};
477  //                        -15--16- -17- -18- -19-  -20- -21- -22- -23-  -24-   -25-
478  //                         -26-  -27- -28-  -29- -30- -31- -32-
479  if(PDG == 3222)
480  {
481    // -- Total pp elastic cross section cs & s1/b1 (main), s2/b2 (tail1), s3/b3 (tail2) --
482    //p2=p*p;p3=p2*p;sp=sqrt(p);p2s=p2*sp;lp=log(p);dl1=lp-(3.=par(3));p4=p2*p2; p=|3-mom|
483    //CS=2.865/p2s/(1+.0022/p2s)+(18.9+.6461*dl1*dl1+9./p)/(1.+.425*lp)/(1.+.4276/p4);
484    //   par(0)       par(7)     par(1) par(2)      par(4)      par(5)         par(6)
485    //dl2=lp-5., s1=(74.+3.*dl2*dl2)/(1+3.4/p4/p)+(.2/p2+17.*p)/(p4+.001*sp),
486    //     par(8) par(9) par(10)        par(11)   par(12)par(13)    par(14)
487    // b1=8.*p**.055/(1.+3.64/p3); s2=5.e-5+4000./(p4+1500.*p); b2=.46+1.2e6/(p4+3.5e6/sp);
488    // par(15) par(16)  par(17)     par(18) par(19)  par(20)   par(21) par(22)  par(23)
489    // s3=5.e-5+1.e10/(p4*p4+8.5e8*p2+1.e10); b3=1.1+3.4e6/(p4+6.8e6); ss=0.
490    //  par(24) par(25)     par(26)  par(27) par(28) par(29)  par(30)   par(31)
491    //
492    if(lastPAR[nLast]!=pwd) // A unique flag to avoid the repeatable definition
493    {
494      if ( tgZ == 1 && tgN == 0 )
495      {
496        for (G4int ip=0; ip<n_hypel; ip++) lastPAR[ip]=hyp_el[ip]; // PiMinus+P
497      }
498      else
499      {
500        G4double a=tgZ+tgN;
501        G4double sa=std::sqrt(a);
502        G4double ssa=std::sqrt(sa);
503        G4double asa=a*sa;
504        G4double a2=a*a;
505        G4double a3=a2*a;
506        G4double a4=a3*a;
507        G4double a5=a4*a;
508        G4double a6=a4*a2;
509        G4double a7=a6*a;
510        G4double a8=a7*a;
511        G4double a9=a8*a;
512        G4double a10=a5*a5;
513        G4double a12=a6*a6;
514        G4double a14=a7*a7;
515        G4double a16=a8*a8;
516        G4double a17=a16*a;
517        //G4double a20=a16*a4;
518        G4double a32=a16*a16;
519        // Reaction cross-section parameters (pel=peh_fit.f)
520        lastPAR[0]=4./(1.+22/asa);                                           // p1
521        lastPAR[1]=2.36*asa/(1.+a*.055/ssa);                                 // p2
522        lastPAR[2]=(1.+.00007*a3/ssa)/(1.+.0026*a2);                         // p3
523        lastPAR[3]=1.76*a/ssa+.00003*a3;                                     // p4
524        lastPAR[4]=(.03+200./a3)/(1.+1.E5/a3/sa);                            // p5
525        lastPAR[5]=5.;                                                       // p6
526        lastPAR[6]=2.E-5/(1.+5.E6/a4);                                       // p7 CB
527        lastPAR[7]=0.;                                                       // p8 not used
528        lastPAR[8]=0.;                                                       // p9 not used
529        // @@ the differential cross-section is parameterized separately for A>6 & A<7
530        if(a<6.5)
531        {
532          G4double a28=a16*a12;
533          // The main pre-exponent      (pel_sg)
534          lastPAR[ 9]=4000*a;                                // p1
535          lastPAR[10]=1.2e7*a8+380*a17;                      // p2
536          lastPAR[11]=.7/(1.+4.e-12*a16);                    // p3
537          lastPAR[12]=2.5/a8/(a4+1.e-16*a32);                // p4
538          lastPAR[13]=.28*a;                                 // p5
539          lastPAR[14]=1.2*a2+2.3;                            // p6
540          lastPAR[15]=3.8/a;                                 // p7
541          // The main slope             (pel_sl)
542          lastPAR[16]=.01/(1.+.0024*a5);                     // p1
543          lastPAR[17]=.2*a;                                  // p2
544          lastPAR[18]=9.e-7/(1.+.035*a5);                    // p3
545          lastPAR[19]=(42.+2.7e-11*a16)/(1.+.14*a);          // p4
546          // The main quadratic         (pel_sh)
547          lastPAR[20]=2.25*a3;                               // p1
548          lastPAR[21]=18.;                                   // p2
549          lastPAR[22]=2.4e-3*a8/(1.+2.6e-4*a7);              // p3
550          lastPAR[23]=3.5e-36*a32*a8/(1.+5.e-15*a32/a);      // p4
551          // The 1st max pre-exponent   (pel_qq)
552          lastPAR[24]=1.e5/(a8+2.5e12/a16);                  // p1
553          lastPAR[25]=8.e7/(a12+1.e-27*a28*a28);             // p2
554          lastPAR[26]=.0006*a3;                              // p3
555          // The 1st max slope          (pel_qs)
556          lastPAR[27]=10.+4.e-8*a12*a;                       // p1
557          lastPAR[28]=.114;                                  // p2
558          lastPAR[29]=.003;                                  // p3
559          lastPAR[30]=2.e-23;                                // p4
560          // The effective pre-exponent (pel_ss)
561          lastPAR[31]=1./(1.+.0001*a8);                      // p1
562          lastPAR[32]=1.5e-4/(1.+5.e-6*a12);                 // p2
563          lastPAR[33]=.03;                                   // p3
564          // The effective slope        (pel_sb)
565          lastPAR[34]=a/2;                                   // p1
566          lastPAR[35]=2.e-7*a4;                              // p2
567          lastPAR[36]=4.;                                    // p3
568          lastPAR[37]=64./a3;                                // p4
569          // The gloria pre-exponent    (pel_us)
570          lastPAR[38]=1.e8*std::exp(.32*asa);                // p1
571          lastPAR[39]=20.*std::exp(.45*asa);                 // p2
572          lastPAR[40]=7.e3+2.4e6/a5;                         // p3
573          lastPAR[41]=2.5e5*std::exp(.085*a3);               // p4
574          lastPAR[42]=2.5*a;                                 // p5
575          // The gloria slope           (pel_ub)
576          lastPAR[43]=920.+.03*a8*a3;                        // p1
577          lastPAR[44]=93.+.0023*a12;                         // p2
578#ifdef pdebug
579         G4cout<<"G4QHPElCS::CalcCS:la "<<lastPAR[38]<<", "<<lastPAR[39]<<", "<<lastPAR[40]
580               <<", "<<lastPAR[42]<<", "<<lastPAR[43]<<", "<<lastPAR[44]<<G4endl;
581#endif
582        }
583        else
584        {
585          G4double p1a10=2.2e-28*a10;
586          G4double r4a16=6.e14/a16;
587          G4double s4a16=r4a16*r4a16;
588          // a24
589          // a36
590          // The main pre-exponent      (peh_sg)
591          lastPAR[ 9]=4.5*std::pow(a,1.15);                  // p1
592          lastPAR[10]=.06*std::pow(a,.6);                    // p2
593          lastPAR[11]=.6*a/(1.+2.e15/a16);                   // p3
594          lastPAR[12]=.17/(a+9.e5/a3+1.5e33/a32);            // p4
595          lastPAR[13]=(.001+7.e-11*a5)/(1.+4.4e-11*a5);      // p5
596          lastPAR[14]=(p1a10*p1a10+2.e-29)/(1.+2.e-22*a12);  // p6
597          // The main slope             (peh_sl)
598          lastPAR[15]=400./a12+2.e-22*a9;                    // p1
599          lastPAR[16]=1.e-32*a12/(1.+5.e22/a14);             // p2
600          lastPAR[17]=1000./a2+9.5*sa*ssa;                   // p3
601          lastPAR[18]=4.e-6*a*asa+1.e11/a16;                 // p4
602          lastPAR[19]=(120./a+.002*a2)/(1.+2.e14/a16);       // p5
603          lastPAR[20]=9.+100./a;                             // p6
604          // The main quadratic         (peh_sh)
605          lastPAR[21]=.002*a3+3.e7/a6;                       // p1
606          lastPAR[22]=7.e-15*a4*asa;                         // p2
607          lastPAR[23]=9000./a4;                              // p3
608          // The 1st max pre-exponent   (peh_qq)
609          lastPAR[24]=.0011*asa/(1.+3.e34/a32/a4);           // p1
610          lastPAR[25]=1.e-5*a2+2.e14/a16;                    // p2
611          lastPAR[26]=1.2e-11*a2/(1.+1.5e19/a12);            // p3
612          lastPAR[27]=.016*asa/(1.+5.e16/a16);               // p4
613          // The 1st max slope          (peh_qs)
614          lastPAR[28]=.002*a4/(1.+7.e7/std::pow(a-6.83,14)); // p1
615          lastPAR[29]=2.e6/a6+7.2/std::pow(a,.11);           // p2
616          lastPAR[30]=11.*a3/(1.+7.e23/a16/a8);              // p3
617          lastPAR[31]=100./asa;                              // p4
618          // The 2nd max pre-exponent   (peh_ss)
619          lastPAR[32]=(.1+4.4e-5*a2)/(1.+5.e5/a4);           // p1
620          lastPAR[33]=3.5e-4*a2/(1.+1.e8/a8);                // p2
621          lastPAR[34]=1.3+3.e5/a4;                           // p3
622          lastPAR[35]=500./(a2+50.)+3;                       // p4
623          lastPAR[36]=1.e-9/a+s4a16*s4a16;                   // p5
624          // The 2nd max slope          (peh_sb)
625          lastPAR[37]=.4*asa+3.e-9*a6;                       // p1
626          lastPAR[38]=.0005*a5;                              // p2
627          lastPAR[39]=.002*a5;                               // p3
628          lastPAR[40]=10.;                                   // p4
629          // The effective pre-exponent (peh_us)
630          lastPAR[41]=.05+.005*a;                            // p1
631          lastPAR[42]=7.e-8/sa;                              // p2
632          lastPAR[43]=.8*sa;                                 // p3
633          lastPAR[44]=.02*sa;                                // p4
634          lastPAR[45]=1.e8/a3;                               // p5
635          lastPAR[46]=3.e32/(a32+1.e32);                     // p6
636          // The effective slope        (peh_ub)
637          lastPAR[47]=24.;                                   // p1
638          lastPAR[48]=20./sa;                                // p2
639          lastPAR[49]=7.e3*a/(sa+1.);                        // p3
640          lastPAR[50]=900.*sa/(1.+500./a3);                  // p4
641#ifdef pdebug
642         G4cout<<"G4QHPElCS::CalcCS:ha "<<lastPAR[41]<<", "<<lastPAR[42]<<", "<<lastPAR[43]
643               <<", "<<lastPAR[44]<<", "<<lastPAR[45]<<", "<<lastPAR[46]<<G4endl;
644#endif
645        }
646        // Parameter for lowEnergyNeutrons
647        lastPAR[51]=1.e15+2.e27/a4/(1.+2.e-18*a16);
648      }
649      lastPAR[nLast]=pwd;
650      // and initialize the zero element of the table
651      G4double lp=lPMin;                                      // ln(momentum)
652      G4bool memCS=onlyCS;                                    // ??
653      onlyCS=false;
654      lastCST[0]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables
655      onlyCS=memCS;
656      lastSST[0]=theSS;
657      lastS1T[0]=theS1;
658      lastB1T[0]=theB1;
659      lastS2T[0]=theS2;
660      lastB2T[0]=theB2;
661      lastS3T[0]=theS3;
662      lastB3T[0]=theB3;
663      lastS4T[0]=theS4;
664      lastB4T[0]=theB4;
665#ifdef pdebug
666      G4cout<<"G4QHyperonPlusElasticCrossSection::GetPTables:ip=0(init), lp="<<lp<<",S1="
667            <<theS1<<",B1="<<theB1<<",S2="<<theS2<<",B2="<<theB3<<",S3="<<theS3
668            <<",B3="<<theB3<<",S4="<<theS4<<",B4="<<theB4<<G4endl;
669#endif
670    }
671    if(LP>ILP)
672    {
673      G4int ini = static_cast<int>((ILP-lPMin+.000001)/dlnP)+1; // already inited till this
674      if(ini<0) ini=0;
675      if(ini<nPoints)
676      {
677        G4int fin = static_cast<int>((LP-lPMin)/dlnP)+1; // final bin of initialization
678        if(fin>=nPoints) fin=nLast;               // Limit of the tabular initialization
679        if(fin>=ini)
680        {
681          G4double lp=0.;
682          for(G4int ip=ini; ip<=fin; ip++)        // Calculate tabular CS,S1,B1,S2,B2,S3,B3
683          {
684            lp=lPMin+ip*dlnP;                     // ln(momentum)
685            G4bool memCS=onlyCS;
686            onlyCS=false;
687            lastCST[ip]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables (ret CS)
688            onlyCS=memCS;
689            lastSST[ip]=theSS;
690            lastS1T[ip]=theS1;
691            lastB1T[ip]=theB1;
692            lastS2T[ip]=theS2;
693            lastB2T[ip]=theB2;
694            lastS3T[ip]=theS3;
695            lastB3T[ip]=theB3;
696            lastS4T[ip]=theS4;
697            lastB4T[ip]=theB4;
698#ifdef pdebug
699            G4cout<<"G4QHyperonPlusElasticCrossSection::GetPTables:ip="<<ip<<",lp="<<lp
700                  <<",S1="<<theS1<<",B1="<<theB1<<",S2="<<theS2<<",B2="<<theB2<<",S3="
701                  <<theS3<<",B3="<<theB3<<",S4="<<theS4<<",B4="<<theB4<<G4endl;
702#endif
703          }
704          return lp;
705        }
706        else G4cout<<"*Warning*G4QHyperonPlusElasticCrossSection::GetPTables: PDG="<<PDG
707                   <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<" > fin="<<fin<<", LP="<<LP
708                   <<" > ILP="<<ILP<<" nothing is done!"<<G4endl;
709      }
710      else G4cout<<"*Warning*G4QHyperonPlusElasticCrossSection::GetPTables: PDG="<<PDG
711                 <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<">= max="<<nPoints<<", LP="<<LP
712                 <<" > ILP="<<ILP<<", lPMax="<<lPMax<<" nothing is done!"<<G4endl;
713    }
714#ifdef pdebug
715    else G4cout<<"*Warning*G4QHyperonPlusElasticCrossSection::GetPTa:PDG="<<PDG<<",Z="<<tgZ
716               <<", N="<<tgN<<", LP="<<LP<<" <= ILP="<<ILP<<" nothing is done!"<<G4endl;
717#endif
718  }
719  else
720  {
721    G4cout<<"*Error*G4QHyperonPlusElasticCrossSection::GetPTables: PDG="<<PDG<<", Z="<<tgZ
722          <<", N="<<tgN<<", while it is defined only for PDG=3222"<<G4endl;
723    throw G4QException("G4QHyperonPlusElasticCrossSection::GetPTables:onlySiPImplemented");
724  }
725  return ILP;
726}
727
728// Returns Q2=-t in independent units (MeV^2) (all internal calculations are in GeV)
729G4double G4QHyperonPlusElasticCrossSection::GetExchangeT(G4int tgZ, G4int tgN, G4int PDG)
730{
731  static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
732  static const G4double third=1./3.;
733  static const G4double fifth=1./5.;
734  static const G4double sevth=1./7.;
735#ifdef tdebug
736  G4cout<<"G4QHyPlElCS::GetExchT:F="<<onlyCS<<",Z="<<tgZ<<",N="<<tgN<<",PDG="<<PDG<<G4endl;
737#endif
738  if(PDG!=3222)G4cout<<"*Warning*G4QHyperonPlusElasticCrossSection::GET:PDG="<<PDG<<G4endl;
739  if(onlyCS)G4cout<<"*Warning*G4QHyperonPlusElasticCrossSection::GetExT: onlyCS=1"<<G4endl;
740  if(lastLP<-4.3) return lastTM*GeVSQ*G4UniformRand();// S-wave for p<14 MeV/c (kinE<.1MeV)
741  G4double q2=0.;
742  if(tgZ==1 && tgN==0)                // ===> p+p=p+p
743  {
744#ifdef tdebug
745    G4cout<<"G4QHyperonPlusElCS::GetExT: TM="<<lastTM<<",S1="<<theS1<<",B1="<<theB1<<",S2="
746          <<theS2<<",B2="<<theB2<<",S3="<<theS3<<",B3="<<theB3<<",GeV2="<<GeVSQ<<G4endl;
747#endif
748    G4double E1=lastTM*theB1;
749    G4double R1=(1.-std::exp(-E1));
750#ifdef tdebug
751    G4double ts1=-std::log(1.-R1)/theB1;
752    G4double ds1=std::fabs(ts1-lastTM)/lastTM;
753    if(ds1>.0001)
754      G4cout<<"*Warning*G4QHyperonPlusElasticCrossSection::GetExT:1p "<<ts1<<"#"<<lastTM
755            <<",d="<<ds1<<",R1="<<R1<<",E1="<<E1<<G4endl;
756#endif
757    G4double E2=lastTM*theB2;
758    G4double R2=(1.-std::exp(-E2*E2*E2));
759#ifdef tdebug
760    G4double ts2=std::pow(-std::log(1.-R2),.333333333)/theB2;
761    G4double ds2=std::fabs(ts2-lastTM)/lastTM;
762    if(ds2>.0001)
763      G4cout<<"*Warning*G4QHyperonPlusElasticCrossSection::GetExT:2p "<<ts2<<"#"<<lastTM
764            <<",d="<<ds2<<",R2="<<R2<<",E2="<<E2<<G4endl;
765#endif
766    G4double E3=lastTM*theB3;
767    G4double R3=(1.-std::exp(-E3));
768#ifdef tdebug
769    G4double ts3=-std::log(1.-R3)/theB3;
770    G4double ds3=std::fabs(ts3-lastTM)/lastTM;
771    if(ds3>.0001)
772      G4cout<<"*Warning*G4QHyperonPlusElasticCrossSection::GetExT:3p "<<ts3<<"#"<<lastTM
773            <<",d="<<ds3<<",R3="<<R1<<",E3="<<E3<<G4endl;
774#endif
775    G4double I1=R1*theS1/theB1;
776    G4double I2=R2*theS2;
777    G4double I3=R3*theS3;
778    G4double I12=I1+I2;
779    G4double rand=(I12+I3)*G4UniformRand();
780    if     (rand<I1 )
781    {
782      G4double ran=R1*G4UniformRand();
783      if(ran>1.) ran=1.;
784      q2=-std::log(1.-ran)/theB1;
785    }
786    else if(rand<I12)
787    {
788      G4double ran=R2*G4UniformRand();
789      if(ran>1.) ran=1.;
790      q2=-std::log(1.-ran);
791      if(q2<0.) q2=0.;
792      q2=std::pow(q2,third)/theB2;
793    }
794    else
795    {
796      G4double ran=R3*G4UniformRand();
797      if(ran>1.) ran=1.;
798      q2=-std::log(1.-ran)/theB3;
799    }
800  }
801  else
802  {
803    G4double a=tgZ+tgN;
804#ifdef tdebug
805    G4cout<<"G4QHyperonPlusElasticCrossSection::GetExT:a="<<a<<",t="<<lastTM<<",S1="<<theS1
806          <<",B1="<<theB1<<",SS="<<theSS<<",S2="<<theS2<<",B2="<<theB2<<",S3="<<theS3
807          <<",B3="<<theB3<<",S4="<<theS4<<",B4="<<theB4<<G4endl;
808#endif
809    G4double E1=lastTM*(theB1+lastTM*theSS);
810    G4double R1=(1.-std::exp(-E1));
811    G4double tss=theSS+theSS; // for future solution of quadratic equation (imediate check)
812#ifdef tdebug
813    G4double ts1=-std::log(1.-R1)/theB1;
814    if(std::fabs(tss)>1.e-7) ts1=(std::sqrt(theB1*(theB1+(tss+tss)*ts1))-theB1)/tss;
815    G4double ds1=(ts1-lastTM)/lastTM;
816    if(ds1>.0001)
817      G4cout<<"*Warning*G4QHyperonPlusElasticCrossSection::GetExT:1a "<<ts1<<"#"<<lastTM
818            <<",d="<<ds1<<",R1="<<R1<<",E1="<<E1<<G4endl;
819#endif
820    G4double tm2=lastTM*lastTM;
821    G4double E2=lastTM*tm2*theB2;                   // power 3 for lowA, 5 for HighA (1st)
822    if(a>6.5)E2*=tm2;                               // for heavy nuclei
823    G4double R2=(1.-std::exp(-E2));
824#ifdef tdebug
825    G4double ts2=-std::log(1.-R2)/theB2;
826    if(a<6.5)ts2=std::pow(ts2,third);
827    else     ts2=std::pow(ts2,fifth);
828    G4double ds2=std::fabs(ts2-lastTM)/lastTM;
829    if(ds2>.0001)
830      G4cout<<"*Warning*G4QHyperonPlusElasticCrossSection::GetExT:2a "<<ts2<<"#"<<lastTM
831            <<",d="<<ds2<<",R2="<<R2<<",E2="<<E2<<G4endl;
832#endif
833    G4double E3=lastTM*theB3;
834    if(a>6.5)E3*=tm2*tm2*tm2;                       // power 1 for lowA, 7 (2nd) for HighA
835    G4double R3=(1.-std::exp(-E3));
836#ifdef tdebug
837    G4double ts3=-std::log(1.-R3)/theB3;
838    if(a>6.5)ts3=std::pow(ts3,sevth);
839    G4double ds3=std::fabs(ts3-lastTM)/lastTM;
840    if(ds3>.0001)
841      G4cout<<"*Warning*G4QHyperonPlusElasticCrossSection::GetExT:3a "<<ts3<<"#"<<lastTM
842            <<",d="<<ds3<<",R3="<<R3<<",E3="<<E3<<G4endl;
843#endif
844    G4double E4=lastTM*theB4;
845    G4double R4=(1.-std::exp(-E4));
846#ifdef tdebug
847    G4double ts4=-std::log(1.-R4)/theB4;
848    G4double ds4=std::fabs(ts4-lastTM)/lastTM;
849    if(ds4>.0001)
850      G4cout<<"*Warning*G4QHyperonPlusElasticCrossSection::GetExT:4a "<<ts4<<"#"<<lastTM
851            <<",d="<<ds4<<",R4="<<R4<<",E4="<<E4<<G4endl;
852#endif
853    G4double I1=R1*theS1;
854    G4double I2=R2*theS2;
855    G4double I3=R3*theS3;
856    G4double I4=R4*theS4;
857    G4double I12=I1+I2;
858    G4double I13=I12+I3;
859    G4double rand=(I13+I4)*G4UniformRand();
860#ifdef tdebug
861    G4cout<<"G4QHPElCS::GExT:1="<<I1<<",2="<<I2<<",3="<<I3<<",4="<<I4<<",r="<<rand<<G4endl;
862#endif
863    if(rand<I1)
864    {
865      G4double ran=R1*G4UniformRand();
866      if(ran>1.) ran=1.;
867      q2=-std::log(1.-ran)/theB1;
868      if(std::fabs(tss)>1.e-7) q2=(std::sqrt(theB1*(theB1+(tss+tss)*q2))-theB1)/tss;
869#ifdef tdebug
870      G4cout<<"G4QHPElCS::GExT:Q2="<<q2<<",ss="<<tss/2<<",b1="<<theB1<<",t1="<<ts1<<G4endl;
871#endif
872    }
873    else if(rand<I12)
874    {
875      G4double ran=R2*G4UniformRand();
876      if(ran>1.) ran=1.;
877      q2=-std::log(1.-ran)/theB2;
878      if(q2<0.) q2=0.;
879      if(a<6.5) q2=std::pow(q2,third);
880      else      q2=std::pow(q2,fifth);
881#ifdef tdebug
882      G4cout<<"G4QHPElCS::GetExT: Q2="<<q2<<",r2="<<R2<<",b2="<<theB2<<",t2="<<ts2<<G4endl;
883#endif
884    }
885    else if(rand<I13)
886    {
887      G4double ran=R3*G4UniformRand();
888      if(ran>1.) ran=1.;
889      q2=-std::log(1.-ran)/theB3;
890      if(q2<0.) q2=0.;
891      if(a>6.5) q2=std::pow(q2,sevth);
892#ifdef tdebug
893      G4cout<<"G4QHPElCS::GetExT: Q2="<<q2<<",r3="<<R2<<",b3="<<theB2<<",t3="<<ts2<<G4endl;
894#endif
895    }
896    else
897    {
898      G4double ran=R4*G4UniformRand();
899      if(ran>1.) ran=1.;
900      q2=-std::log(1.-ran)/theB4;
901      if(a<6.5) q2=lastTM-q2;                    // u reduced for lightA (starts from 0)
902#ifdef tdebug
903      G4cout<<"G4QHPElCS::GExT:Q2="<<q2<<",m="<<lastTM<<",b4="<<theB3<<",t4="<<ts3<<G4endl;
904#endif
905    }
906  }
907  if(q2<0.) q2=0.;
908  if(!(q2>=-1.||q2<=1.)) G4cout<<"*NAN*G4QHyperonPlusElasticCS::GetExchT: -t="<<q2<<G4endl;
909  if(q2>lastTM)
910  {
911#ifdef tdebug
912    G4cout<<"*Warning*G4QHyperonPlusElasticCrossSection::GET:-t="<<q2<<">"<<lastTM<<G4endl;
913#endif
914    q2=lastTM;
915  }
916  return q2*GeVSQ;
917}
918
919// Returns B in independent units (MeV^-2) (all internal calculations are in GeV) see ExT
920G4double G4QHyperonPlusElasticCrossSection::GetSlope(G4int tgZ, G4int tgN, G4int PDG)
921{
922  static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
923#ifdef tdebug
924  G4cout<<"G4QHyperonPlusECS::GetS:"<<onlyCS<<",Z="<<tgZ<<",N="<<tgN<<",PDG="<<PDG<<G4endl;
925#endif
926  if(onlyCS)G4cout<<"*Warning*G4QHyperonPlusElasticCrossSection::GetSl:onlCS=true"<<G4endl;
927  if(lastLP<-4.3) return 0.;          // S-wave for p<14 MeV/c (kinE<.1MeV)
928  if(PDG != 3222)
929  {
930    G4cout<<"*Error*G4QHyperonPlusElasticCrossSection::GetSlope: PDG="<<PDG<<", Z="<<tgZ
931          <<", N="<<tgN<<", while it is defined only for PDG=3222"<<G4endl;
932    throw G4QException("G4QHyperonPlusElasticCrossSection::GetSlope:SigP are implemented");
933  }
934  if(theB1<0.) theB1=0.;
935  if(!(theB1>=-1.||theB1<=1.)) G4cout<<"*NAN*G4QHyperonPlusElCS::GetSlope:"<<theB1<<G4endl;
936  return theB1/GeVSQ;
937}
938
939// Returns half max(Q2=-t) in independent units (MeV^2)
940G4double G4QHyperonPlusElasticCrossSection::GetHMaxT()
941{
942  static const G4double HGeVSQ=gigaelectronvolt*gigaelectronvolt/2.;
943  return lastTM*HGeVSQ;
944}
945
946// lastLP is used, so calculating tables, one need to remember and then recover lastLP
947G4double G4QHyperonPlusElasticCrossSection::GetTabValues(G4double lp, G4int PDG, G4int tgZ,
948                                                    G4int tgN)
949{
950  if(PDG!=3222)G4cout<<"*Warning*G4QHyperonPlusElasticCrossSection::GTV:PDG="<<PDG<<G4endl;
951  if(tgZ<0 || tgZ>92)
952  {
953    G4cout<<"*Warning*G4QHyperonPlusElastCS::GetTabV:(1-92)NoIsotopes for Z="<<tgZ<<G4endl;
954    return 0.;
955  }
956  G4int iZ=tgZ-1; // Z index
957  if(iZ<0)
958  {
959    iZ=0;         // conversion of the neutron target to the proton target
960    tgZ=1;
961    tgN=0;
962  }
963  //if(nN[iZ][0] < 0)
964  //{
965#ifdef isodebug
966  //  G4cout<<"*Warning*G4QHyperonPlusElasticCS::GetTabVal:NoIsotopes for Z="<<tgZ<<G4endl;
967#endif
968  //  return 0.;
969  //}
970#ifdef pdebug
971  G4cout<<"G4QHyperonPlusECS::GetTV: l="<<lp<<",Z="<<tgZ<<",N="<<tgN<<",PDG="<<PDG<<G4endl;
972#endif
973  G4double p=std::exp(lp);              // momentum
974  G4double sp=std::sqrt(p);             // sqrt(p)
975  G4double p2=p*p;           
976  G4double p3=p2*p;
977  G4double p4=p3*p;
978  if ( tgZ == 1 && tgN == 0 ) // Hyperon+P
979  {
980    G4double dl2=lp-lastPAR[9];
981    theSS=lastPAR[32];
982    theS1=(lastPAR[10]+lastPAR[11]*dl2*dl2)/(1.+lastPAR[12]/p4/p)+
983          (lastPAR[13]/p2+lastPAR[14]*p)/(p4+lastPAR[15]*sp);
984    theB1=lastPAR[16]*std::pow(p,lastPAR[17])/(1.+lastPAR[18]/p3);
985    theS2=lastPAR[19]+lastPAR[20]/(p4+lastPAR[21]*p);
986    theB2=lastPAR[22]+lastPAR[23]/(p4+lastPAR[24]/sp); 
987    theS3=lastPAR[25]+lastPAR[26]/(p4*p4+lastPAR[27]*p2+lastPAR[28]);
988    theB3=lastPAR[29]+lastPAR[30]/(p4+lastPAR[31]); 
989    theS4=0.;
990    theB4=0.; 
991#ifdef tdebug
992    G4cout<<"G4QHyperonPlusElasticCrossSection::GetTabV:TM="<<lastTM<<",S1="<<theS1<<",B1="
993          <<theB1<<",S2="<<theS2<<",B2="<<theB2<<",S3="<<theS1<<",B3="<<theB1<<G4endl;
994#endif
995    // Returns the total elastic pim-p cross-section (to avoid spoiling lastSIG)
996    G4double dp=lp-lastPAR[4];
997    return lastPAR[0]/(lastPAR[1]+p2*(lastPAR[2]+p2))+(lastPAR[3]*dp*dp+lastPAR[5]+
998           lastPAR[6]/p2)/(1.+lastPAR[7]/sp+lastPAR[8]/p4);
999  }
1000  else
1001  {
1002    G4double p5=p4*p;
1003    G4double p6=p5*p;
1004    G4double p8=p6*p2;
1005    G4double p10=p8*p2;
1006    G4double p12=p10*p2;
1007    G4double p16=p8*p8;
1008    //G4double p24=p16*p8;
1009    G4double dl=lp-5.;
1010    G4double a=tgZ+tgN;
1011    G4double pah=std::pow(p,a/2);
1012    G4double pa=pah*pah;
1013    G4double pa2=pa*pa;
1014    if(a<6.5)
1015    {
1016      theS1=lastPAR[9]/(1.+lastPAR[10]*p4*pa)+lastPAR[11]/(p4+lastPAR[12]*p4/pa2)+
1017            (lastPAR[13]*dl*dl+lastPAR[14])/(1.+lastPAR[15]/p2);
1018      theB1=(lastPAR[16]+lastPAR[17]*p2)/(p4+lastPAR[18]/pah)+lastPAR[19];
1019      theSS=lastPAR[20]/(1.+lastPAR[21]/p2)+lastPAR[22]/(p6/pa+lastPAR[23]/p16);
1020      theS2=lastPAR[24]/(pa/p2+lastPAR[25]/p4)+lastPAR[26];
1021      theB2=lastPAR[27]*std::pow(p,lastPAR[28])+lastPAR[29]/(p8+lastPAR[30]/p16);
1022      theS3=lastPAR[31]/(pa*p+lastPAR[32]/pa)+lastPAR[33];
1023      theB3=lastPAR[34]/(p3+lastPAR[35]/p6)+lastPAR[36]/(1.+lastPAR[37]/p2);
1024      theS4=p2*(pah*lastPAR[38]*std::exp(-pah*lastPAR[39])+
1025                lastPAR[40]/(1.+lastPAR[41]*std::pow(p,lastPAR[42])));
1026      theB4=lastPAR[43]*pa/p2/(1.+pa*lastPAR[44]);
1027#ifdef tdebug
1028      G4cout<<"G4QHyperonPlusElasticCS::GetTabV: lA, p="<<p<<",S1="<<theS1<<",B1="<<theB1
1029            <<",SS="<<theSS<<",S2="<<theS2<<",B2="<<theB2<<",S3="<<theS3<<",B3="<<theB3
1030            <<",S4="<<theS4<<",B4="<<theB4<<G4endl;
1031#endif
1032    }
1033    else
1034    {
1035      theS1=lastPAR[9]/(1.+lastPAR[10]/p4)+lastPAR[11]/(p4+lastPAR[12]/p2)+
1036            lastPAR[13]/(p5+lastPAR[14]/p16);
1037      theB1=(lastPAR[15]/p8+lastPAR[19])/(p+lastPAR[16]/std::pow(p,lastPAR[20]))+
1038            lastPAR[17]/(1.+lastPAR[18]/p4);
1039      theSS=lastPAR[21]/(p4/std::pow(p,lastPAR[23])+lastPAR[22]/p4);
1040      theS2=lastPAR[24]/p4/(std::pow(p,lastPAR[25])+lastPAR[26]/p12)+lastPAR[27];
1041      theB2=lastPAR[28]/std::pow(p,lastPAR[29])+lastPAR[30]/std::pow(p,lastPAR[31]);
1042      theS3=lastPAR[32]/std::pow(p,lastPAR[35])/(1.+lastPAR[36]/p12)+
1043            lastPAR[33]/(1.+lastPAR[34]/p6);
1044      theB3=lastPAR[37]/p8+lastPAR[38]/p2+lastPAR[39]/(1.+lastPAR[40]/p8);
1045      theS4=(lastPAR[41]/p4+lastPAR[46]/p)/(1.+lastPAR[42]/p10)+
1046            (lastPAR[43]+lastPAR[44]*dl*dl)/(1.+lastPAR[45]/p12);
1047      theB4=lastPAR[47]/(1.+lastPAR[48]/p)+lastPAR[49]*p4/(1.+lastPAR[50]*p5);
1048#ifdef tdebug
1049      G4cout<<"G4QHyperonPlusElasticCS::GetTabV:hA,p="<<p<<",S1="<<theS1<<",B1="<<theB1
1050            <<",SS="<<theSS<<",S2="<<theS2<<",B2="<<theB2<<",S3="<<theS3<<",B3="<<theB3
1051            <<",S4="<<theS4<<",B4="<<theB4<<G4endl;
1052#endif
1053    }
1054    // Returns the total elastic (n/p)A cross-section (to avoid spoiling lastSIG)
1055#ifdef tdebug
1056    G4cout<<"G4QHyperonPlusElCS::GTV: PDG="<<PDG<<",P="<<p<<",N="<<tgN<<",Z="<<tgZ<<G4endl;
1057#endif
1058    G4double dlp=lp-lastPAR[5]; // ax
1059    //         p1                p2                 p3
1060    return (lastPAR[0]*dlp*dlp+lastPAR[1])/(1.+lastPAR[2]/p)+
1061           lastPAR[3]/(p3+lastPAR[4]+lastPAR[5]/p4);
1062    //         p4             p5         p6
1063  }
1064  return 0.;
1065} // End of GetTableValues
1066
1067// Returns max -t=Q2 (GeV^2) for the momentum pP(GeV) and the target nucleus (tgN,tgZ)
1068G4double G4QHyperonPlusElasticCrossSection::GetQ2max(G4int PDG, G4int tgZ, G4int tgN,
1069                                                    G4double pP)
1070{
1071  //static const G4double mNeut= G4QPDGCode(2112).GetMass()*.001; // MeV to GeV
1072  static const G4double mSigP= G4QPDGCode(3222).GetMass()*.001; // pion mass MeV to GeV
1073  //static const G4double mProt= G4QPDGCode(2212).GetMass()*.001; // MeV to GeV
1074  //static const G4double mLamb= G4QPDGCode(3122).GetMass()*.001; // MeV to GeV
1075  //static const G4double mHe3 = G4QPDGCode(2112).GetNuclMass(2,1,0)*.001; // MeV to GeV
1076  //static const G4double mAlph = G4QPDGCode(2112).GetNuclMass(2,2,0)*.001; // MeV to GeV
1077  //static const G4double mDeut = G4QPDGCode(2112).GetNuclMass(1,1,0)*.001; // MeV to GeV
1078  static const G4double mSi2= mSigP*mSigP;
1079  //static const G4double mProt2= mProt*mProt;
1080  //static const G4double mNeut2= mNeut*mNeut;
1081  //static const G4double mDeut2= mDeut*mDeut;
1082  G4double pP2=pP*pP;                                 // squared momentum of the projectile
1083  if(tgZ || tgN>-1)                                   // ---> pipA
1084  {
1085    G4double mt=G4QPDGCode(90000000+tgZ*1000+tgN).GetMass()*.001; // Target mass in GeV
1086    G4double dmt=mt+mt;
1087    G4double s=dmt*std::sqrt(pP2+mSi2)+mSi2+mt*mt;    // Mondelstam s
1088    return dmt*dmt*pP2/s;
1089  }
1090  else
1091  {
1092    G4cout<<"*Error*G4QHyperonPlusElasticCrossSection::GetQ2m:PDG="<<PDG<<",Z="<<tgZ<<",N="
1093          <<tgN<<", while it is defined only for p projectiles & Z_target>0"<<G4endl;
1094    throw G4QException("G4QHyperPlusElasticCrossSection::GetQ2max: only Sig+ implemented");
1095  }
1096}
Note: See TracBrowser for help on using the repository browser.