source: trunk/source/processes/hadronic/models/chiral_inv_phase_space/cross_sections/src/G4QPionPlusElasticCrossSection.cc @ 1340

Last change on this file since 1340 was 1340, checked in by garnier, 14 years ago

update ti head

File size: 51.3 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer                                           *
4// *                                                                  *
5// * The  Geant4 software  is  copyright of the Copyright Holders  of *
6// * the Geant4 Collaboration.  It is provided  under  the terms  and *
7// * conditions of the Geant4 Software License,  included in the file *
8// * LICENSE and available at  http://cern.ch/geant4/license .  These *
9// * include a list of copyright holders.                             *
10// *                                                                  *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work  make  any representation or  warranty, express or implied, *
14// * regarding  this  software system or assume any liability for its *
15// * use.  Please see the license in the file  LICENSE  and URL above *
16// * for the full disclaimer and the limitation of liability.         *
17// *                                                                  *
18// * This  code  implementation is the result of  the  scientific and *
19// * technical work of the GEANT4 collaboration.                      *
20// * By using,  copying,  modifying or  distributing the software (or *
21// * any work based  on the software)  you  agree  to acknowledge its *
22// * use  in  resulting  scientific  publications,  and indicate your *
23// * acceptance of all terms of the Geant4 Software license.          *
24// ********************************************************************
25//
26//
27// $Id: G4QPionPlusElasticCrossSection.cc,v 1.3 2010/02/16 07:53:05 mkossov Exp $
28// GEANT4 tag $Name: hadr-chips-V09-03-08 $
29//
30//
31// G4 Physics class: G4QPionPlusElasticCrossSection for pA elastic cross sections
32// Created: M.V. Kossov, CERN/ITEP(Moscow), 21-Jan-10
33// The last update: M.V. Kossov, CERN/ITEP (Moscow) 21-Jan-10
34//
35//================================================================================
36// Short description: Interaction cross-sections for the G4QElastic process
37// -------------------------------------------------------------------------------
38
39//#define debug
40//#define isodebug
41//#define pdebug
42//#define ppdebug
43//#define tdebug
44//#define sdebug
45
46#include "G4QPionPlusElasticCrossSection.hh"
47
48// Initialization of the static parameters
49const G4int G4QPionPlusElasticCrossSection::nPoints=128;//#ofPt in AMDB table(>anyPar)(D)
50const G4int G4QPionPlusElasticCrossSection::nLast=nPoints-1;// theLastElement inTheTable(D)
51G4double  G4QPionPlusElasticCrossSection::lPMin=-8.;  // Min tabulated logarithmMomentum(D)
52G4double  G4QPionPlusElasticCrossSection::lPMax= 8.;  // Max tabulated logarithmMomentum(D)
53G4double  G4QPionPlusElasticCrossSection::dlnP=(lPMax-lPMin)/nLast;// LogStep inTheTable(D)
54G4bool    G4QPionPlusElasticCrossSection::onlyCS=true;// Flag toCalcul OnlyCS(not Si/Bi)(L)
55G4double  G4QPionPlusElasticCrossSection::lastSIG=0.; // Last calculated cross section  (L)
56G4double  G4QPionPlusElasticCrossSection::lastLP=-10.;// Last log(mom_of IncidentHadron)(L)
57G4double  G4QPionPlusElasticCrossSection::lastTM=0.;  // Last t_maximum                 (L)
58G4double  G4QPionPlusElasticCrossSection::theSS=0.;   // TheLastSqSlope of 1st difr.Max(L)
59G4double  G4QPionPlusElasticCrossSection::theS1=0.;   // TheLastMantissa of 1st difr.Max(L)
60G4double  G4QPionPlusElasticCrossSection::theB1=0.;   // TheLastSlope of 1st difruct.Max(L)
61G4double  G4QPionPlusElasticCrossSection::theS2=0.;   // TheLastMantissa of 2nd difr.Max(L)
62G4double  G4QPionPlusElasticCrossSection::theB2=0.;   // TheLastSlope of 2nd difruct.Max(L)
63G4double  G4QPionPlusElasticCrossSection::theS3=0.;   // TheLastMantissa of 3d difr. Max(L)
64G4double  G4QPionPlusElasticCrossSection::theB3=0.;   // TheLastSlope of 3d difruct. Max(L)
65G4double  G4QPionPlusElasticCrossSection::theS4=0.;   // TheLastMantissa of 4th difr.Max(L)
66G4double  G4QPionPlusElasticCrossSection::theB4=0.;   // TheLastSlope of 4th difruct.Max(L)
67G4int     G4QPionPlusElasticCrossSection::lastTZ=0;   // Last atomic number of the target
68G4int     G4QPionPlusElasticCrossSection::lastTN=0;   // Last # of neutrons in the target
69G4double  G4QPionPlusElasticCrossSection::lastPIN=0.; // Last initialized max momentum
70G4double* G4QPionPlusElasticCrossSection::lastCST=0;  // Elastic cross-section table
71G4double* G4QPionPlusElasticCrossSection::lastPAR=0;  // ParametersForFunctionalCalculation
72G4double* G4QPionPlusElasticCrossSection::lastSST=0;  // E-dep of SqaredSlope of 1st difMax
73G4double* G4QPionPlusElasticCrossSection::lastS1T=0;  // E-dep of mantissa of 1st dif.Max
74G4double* G4QPionPlusElasticCrossSection::lastB1T=0;  // E-dep of the slope of 1st difMax
75G4double* G4QPionPlusElasticCrossSection::lastS2T=0;  // E-dep of mantissa of 2nd difrMax
76G4double* G4QPionPlusElasticCrossSection::lastB2T=0;  // E-dep of the slope of 2nd difMax
77G4double* G4QPionPlusElasticCrossSection::lastS3T=0;  // E-dep of mantissa of 3d difr.Max
78G4double* G4QPionPlusElasticCrossSection::lastB3T=0;  // E-dep of the slope of 3d difrMax
79G4double* G4QPionPlusElasticCrossSection::lastS4T=0;  // E-dep of mantissa of 4th difrMax
80G4double* G4QPionPlusElasticCrossSection::lastB4T=0;  // E-dep of the slope of 4th difMax
81G4int     G4QPionPlusElasticCrossSection::lastN=0;    // The last N of calculated nucleus
82G4int     G4QPionPlusElasticCrossSection::lastZ=0;    // The last Z of calculated nucleus
83G4double  G4QPionPlusElasticCrossSection::lastP=0.;   // LastUsed in cross section Momentum
84G4double  G4QPionPlusElasticCrossSection::lastTH=0.;  // Last threshold momentum
85G4double  G4QPionPlusElasticCrossSection::lastCS=0.;  // Last value of the Cross Section
86G4int     G4QPionPlusElasticCrossSection::lastI=0;    // The last position in the DAMDB
87
88std::vector<G4double*> G4QPionPlusElasticCrossSection::PAR;// Vector of pars forFunctCalcul
89std::vector<G4double*> G4QPionPlusElasticCrossSection::CST;// Vector of cross-section table
90std::vector<G4double*> G4QPionPlusElasticCrossSection::SST;// Vector of the 1st SquareSlope
91std::vector<G4double*> G4QPionPlusElasticCrossSection::S1T;// Vector of the 1st mantissa
92std::vector<G4double*> G4QPionPlusElasticCrossSection::B1T;// Vector of the 1st slope
93std::vector<G4double*> G4QPionPlusElasticCrossSection::S2T;// Vector of the 2nd mantissa
94std::vector<G4double*> G4QPionPlusElasticCrossSection::B2T;// Vector of the 2nd slope
95std::vector<G4double*> G4QPionPlusElasticCrossSection::S3T;// Vector of the 3d mantissa
96std::vector<G4double*> G4QPionPlusElasticCrossSection::B3T;// Vector of the 3d slope
97std::vector<G4double*> G4QPionPlusElasticCrossSection::S4T;// Vector of the 4th mantissa(g)
98std::vector<G4double*> G4QPionPlusElasticCrossSection::B4T;// Vector of the 4th slope(glor)
99
100G4QPionPlusElasticCrossSection::G4QPionPlusElasticCrossSection()
101{
102}
103
104G4QPionPlusElasticCrossSection::~G4QPionPlusElasticCrossSection()
105{
106  std::vector<G4double*>::iterator pos;
107  for (pos=CST.begin(); pos<CST.end(); pos++)
108  { delete [] *pos; }
109  CST.clear();
110  for (pos=PAR.begin(); pos<PAR.end(); pos++)
111  { delete [] *pos; }
112  PAR.clear();
113  for (pos=SST.begin(); pos<SST.end(); pos++)
114  { delete [] *pos; }
115  SST.clear();
116  for (pos=S1T.begin(); pos<S1T.end(); pos++)
117  { delete [] *pos; }
118  S1T.clear();
119  for (pos=B1T.begin(); pos<B1T.end(); pos++)
120  { delete [] *pos; }
121  B1T.clear();
122  for (pos=S2T.begin(); pos<S2T.end(); pos++)
123  { delete [] *pos; }
124  S2T.clear();
125  for (pos=B2T.begin(); pos<B2T.end(); pos++)
126  { delete [] *pos; }
127  B2T.clear();
128  for (pos=S3T.begin(); pos<S3T.end(); pos++)
129  { delete [] *pos; }
130  S3T.clear();
131  for (pos=B3T.begin(); pos<B3T.end(); pos++)
132  { delete [] *pos; }
133  B3T.clear();
134  for (pos=S4T.begin(); pos<S4T.end(); pos++)
135  { delete [] *pos; }
136  S4T.clear();
137  for (pos=B4T.begin(); pos<B4T.end(); pos++)
138  { delete [] *pos; }
139  B4T.clear();
140}
141
142// Returns Pointer to the G4VQCrossSection class
143G4VQCrossSection* G4QPionPlusElasticCrossSection::GetPointer()
144{
145  static G4QPionPlusElasticCrossSection theCrossSection;//StaticBody of theQEl CrossSection
146#ifdef pdebug
147  G4cout<<"G4QPiPlElCS::GetCS: PiPlus Elastic pointer is taken"<<G4endl;
148#endif
149  return &theCrossSection;
150}
151
152// The main member function giving the collision cross section (P is in IU, CS is in mb)
153// Make pMom in independent units ! (Now it is MeV)
154G4double G4QPionPlusElasticCrossSection::GetCrossSection(G4bool fCS, G4double pMom,
155                                                         G4int tgZ, G4int tgN, G4int pPDG)
156{
157  static std::vector <G4int>    colN;  // Vector of N for calculated nuclei (isotops)
158  static std::vector <G4int>    colZ;  // Vector of Z for calculated nuclei (isotops)
159  static std::vector <G4double> colP;  // Vector of last momenta for the reaction
160  static std::vector <G4double> colTH; // Vector of energy thresholds for the reaction
161  static std::vector <G4double> colCS; // Vector of last cross sections for the reaction
162  // ***---*** End of the mandatory Static Definitions of the Associative Memory ***---***
163  G4double pEn=pMom;
164  onlyCS=fCS;
165#ifdef pdebug
166  G4cout<<"G4QPElCS::GetCS:>>> f="<<fCS<<", p="<<pMom<<", Z="<<tgZ<<"("<<lastZ<<") ,N="
167        <<tgN<<"("<<lastN<<"), T="<<pEn<<"("<<lastTH<<")"<<",Sz="<<colN.size()<<G4endl;
168  //CalculateCrossSection(fCS,-27,j,pPDG,lastZ,lastN,pMom); // DUMMY TEST
169#endif
170  if(pPDG!= 211)
171  {
172    G4cout<<"*Warning*G4QPionPlusElCS::GetCS:**> Found pPDG="<<pPDG<<" ====> CS=0"<<G4endl;
173    //CalculateCrossSection(fCS,-27,j,pPDG,lastZ,lastN,pMom); // DUMMY TEST
174    return 0.;                         // projectile PDG=0 is a mistake (?!) @@
175  }
176  G4bool in=false;                   // By default the isotope must be found in the AMDB
177  lastP   = 0.;                      // New momentum history (nothing to compare with)
178  lastN   = tgN;                     // The last N of the calculated nucleus
179  lastZ   = tgZ;                     // The last Z of the calculated nucleus
180  lastI   = colN.size();             // Size of the Associative Memory DB in the heap
181  if(lastI) for(G4int i=0; i<lastI; i++) // Loop over proj/tgZ/tgN lines of DB
182  {                                  // The nucleus with projPDG is found in AMDB
183    if(colN[i]==tgN && colZ[i]==tgZ) // Isotope is foind in AMDB
184    {
185      lastI=i;
186      lastTH =colTH[i];              // Last THreshold (A-dependent)
187#ifdef debug
188      G4cout<<"G4QElCS::GetCS:*Found* P="<<pMom<<",Threshold="<<lastTH<<",i="<<i<<G4endl;
189      //CalculateCrossSection(fCS,-27,i,pPDG,lastZ,lastN,pMom); // DUMMY TEST
190#endif
191      if(pEn<=lastTH)
192      {
193#ifdef debug
194        G4cout<<"G4QElCS::GetCS:Found T="<<pEn<<" < Threshold="<<lastTH<<",CS=0"<<G4endl;
195        //CalculateCrossSection(fCS,-27,i,pPDG,lastZ,lastN,pMom); // DUMMY TEST
196#endif
197        return 0.;                   // Energy is below the Threshold value
198      }
199      lastP  =colP [i];              // Last Momentum  (A-dependent)
200      lastCS =colCS[i];              // Last CrossSect (A-dependent)
201      //  if(std::fabs(lastP/pMom-1.)<tolerance) //VI (do not use tolerance)
202      if(lastP == pMom)              // Do not recalculate
203      {
204#ifdef debug
205        G4cout<<"G4QElCS::GetCS:P="<<pMom<<",CS="<<lastCS*millibarn<<G4endl;
206#endif
207        CalculateCrossSection(fCS,-1,i,pPDG,lastZ,lastN,pMom); // Update param's only
208        return lastCS*millibarn;     // Use theLastCS
209      }
210      in = true;                       // This is the case when the isotop is found in DB
211      // Momentum pMom is in IU ! @@ Units
212#ifdef debug
213      G4cout<<"G4QElCS::G:UpdateDB P="<<pMom<<",f="<<fCS<<",I="<<lastI<<",i="<<i<<G4endl;
214#endif
215      lastCS=CalculateCrossSection(fCS,-1,i,pPDG,lastZ,lastN,pMom); // read & update
216#ifdef debug
217      G4cout<<"G4QElCS::GetCrosSec: *****> New (inDB) Calculated CS="<<lastCS<<G4endl;
218      //CalculateCrossSection(fCS,-27,i,pPDG,lastZ,lastN,pMom); // DUMMY TEST
219#endif
220      if(lastCS<=0. && pEn>lastTH)    // Correct the threshold
221      {
222#ifdef debug
223        G4cout<<"G4QElCS::GetCS: New T="<<pEn<<"(CS=0) > Threshold="<<lastTH<<G4endl;
224#endif
225        lastTH=pEn;
226      }
227      break;                           // Go out of the LOOP with found lastI
228    }
229#ifdef debug
230    G4cout<<"---G4QElCrossSec::GetCrosSec:pPDG="<<pPDG<<",i="<<i<<",N="<<colN[i]
231          <<",Z["<<i<<"]="<<colZ[i]<<G4endl;
232    //CalculateCrossSection(fCS,-27,i,pPDG,lastZ,lastN,pMom); // DUMMY TEST
233#endif
234  } // End of attampt to find the nucleus in DB
235  if(!in)                            // This nucleus has not been calculated previously
236  {
237#ifdef debug
238    G4cout<<"G4QElCS::GetCrosSec:CalcNew P="<<pMom<<",f="<<fCS<<",lastI="<<lastI<<G4endl;
239#endif
240    //!!The slave functions must provide cross-sections in millibarns (mb) !! (not in IU)
241    lastCS=CalculateCrossSection(fCS,0,lastI,pPDG,lastZ,lastN,pMom);//calculate&create
242    if(lastCS<=0.)
243    {
244      lastTH = ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
245#ifdef debug
246      G4cout<<"G4QElCrossSection::GetCrossSect: NewThresh="<<lastTH<<",T="<<pEn<<G4endl;
247#endif
248      if(pEn>lastTH)
249      {
250#ifdef debug
251        G4cout<<"G4QElCS::GetCS: First T="<<pEn<<"(CS=0) > Threshold="<<lastTH<<G4endl;
252#endif
253        lastTH=pEn;
254      }
255    }
256#ifdef debug
257    G4cout<<"G4QElCS::GetCrosSec: New CS="<<lastCS<<",lZ="<<lastN<<",lN="<<lastZ<<G4endl;
258    //CalculateCrossSection(fCS,-27,lastI,pPDG,lastZ,lastN,pMom); // DUMMY TEST
259#endif
260    colN.push_back(tgN);
261    colZ.push_back(tgZ);
262    colP.push_back(pMom);
263    colTH.push_back(lastTH);
264    colCS.push_back(lastCS);
265#ifdef debug
266    G4cout<<"G4QElCS::GetCS:1st,P="<<pMom<<"(MeV),CS="<<lastCS*millibarn<<"(mb)"<<G4endl;
267    //CalculateCrossSection(fCS,-27,lastI,pPDG,lastZ,lastN,pMom); // DUMMY TEST
268#endif
269    return lastCS*millibarn;
270  } // End of creation of the new set of parameters
271  else
272  {
273#ifdef debug
274    G4cout<<"G4QElCS::GetCS: Update lastI="<<lastI<<G4endl;
275#endif
276    colP[lastI]=pMom;
277    colCS[lastI]=lastCS;
278  }
279#ifdef debug
280  G4cout<<"G4QElCS::GetCrSec:End,P="<<pMom<<"(MeV),CS="<<lastCS*millibarn<<"(mb)"<<G4endl;
281  //CalculateCrossSection(fCS,-27,lastI,pPDG,lastZ,lastN,pMom); // DUMMY TEST
282  G4cout<<"G4QElCS::GetCrSec:***End***, onlyCS="<<onlyCS<<G4endl;
283#endif
284  return lastCS*millibarn;
285}
286
287// Calculation of total elastic cross section (p in IU, CS in mb) @@ Units (?)
288// F=0 - create AMDB, F=-1 - read&update AMDB, F=1 - update AMDB (sinchro with higher AMDB)
289G4double G4QPionPlusElasticCrossSection::CalculateCrossSection(G4bool CS, G4int F, G4int I,
290                                             G4int PDG, G4int tgZ, G4int tgN, G4double pIU)
291{
292  // *** Begin of Associative Memory DB for acceleration of the cross section calculations
293  static std::vector <G4double>  PIN;   // Vector of max initialized log(P) in the table
294  // *** End of Static Definitions (Associative Memory Data Base) ***
295  G4double pMom=pIU/GeV;                // All calculations are in GeV
296  onlyCS=CS;                            // Flag to calculate only CS (not Si/Bi)
297#ifdef debug
298  G4cout<<"G4QPionPlusElasticCroS::CalcCS:->onlyCS="<<onlyCS<<",F="<<F<<",p="<<pIU<<G4endl;
299#endif
300  lastLP=std::log(pMom);                // Make a logarithm of the momentum for calculation
301  if(F)                                 // This isotope was found in AMDB =>RETRIEVE/UPDATE
302  {
303    if(F<0)                             // the AMDB must be loded
304    {
305      lastPIN = PIN[I];                 // Max log(P) initialised for this table set
306      lastPAR = PAR[I];                 // Pointer to the parameter set
307      lastCST = CST[I];                 // Pointer to the total sross-section table
308      lastSST = SST[I];                 // Pointer to the first squared slope
309      lastS1T = S1T[I];                 // Pointer to the first mantissa
310      lastB1T = B1T[I];                 // Pointer to the first slope
311      lastS2T = S2T[I];                 // Pointer to the second mantissa
312      lastB2T = B2T[I];                 // Pointer to the second slope
313      lastS3T = S3T[I];                 // Pointer to the third mantissa
314      lastB3T = B3T[I];                 // Pointer to the rhird slope
315      lastS4T = S4T[I];                 // Pointer to the 4-th mantissa
316      lastB4T = B4T[I];                 // Pointer to the 4-th slope
317#ifdef debug
318      G4cout<<"G4QElasticCS::CalcCS: DB is updated for I="<<I<<",*,PIN4="<<PIN[4]<<G4endl;
319#endif
320    }
321#ifdef debug
322    G4cout<<"G4QPionPlusElasticCroS::CalcCS:*read*, LP="<<lastLP<<",PIN="<<lastPIN<<G4endl;
323#endif
324    if(lastLP>lastPIN && lastLP<lPMax)
325    {
326      lastPIN=GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);// Can update upper logP-Limit in tabs
327#ifdef debug
328      G4cout<<"G4QElCS::CalcCS:*updated(I)*,LP="<<lastLP<<"<IN["<<I<<"]="<<lastPIN<<G4endl;
329#endif
330      PIN[I]=lastPIN;                   // Remember the new P-Limit of the tables
331    }
332  }
333  else                                  // This isotope wasn't initialized => CREATE
334  {
335    lastPAR = new G4double[nPoints];    // Allocate memory for parameters of CS function
336    lastPAR[nLast]=0;                   // Initialization for VALGRIND
337    lastCST = new G4double[nPoints];    // Allocate memory for Tabulated CS function   
338    lastSST = new G4double[nPoints];    // Allocate memory for Tabulated first sqaredSlope
339    lastS1T = new G4double[nPoints];    // Allocate memory for Tabulated first mantissa
340    lastB1T = new G4double[nPoints];    // Allocate memory for Tabulated first slope   
341    lastS2T = new G4double[nPoints];    // Allocate memory for Tabulated second mantissa
342    lastB2T = new G4double[nPoints];    // Allocate memory for Tabulated second slope   
343    lastS3T = new G4double[nPoints];    // Allocate memory for Tabulated third mantissa
344    lastB3T = new G4double[nPoints];    // Allocate memory for Tabulated third slope   
345    lastS4T = new G4double[nPoints];    // Allocate memory for Tabulated 4-th mantissa
346    lastB4T = new G4double[nPoints];    // Allocate memory for Tabulated 4-th slope   
347#ifdef debug
348    G4cout<<"G4QPionPlusElasticCroS::CalcCS:*ini*,lastLP="<<lastLP<<",min="<<lPMin<<G4endl;
349#endif
350    lastPIN = GetPTables(lastLP,lPMin,PDG,tgZ,tgN); // Returns the new P-limit for tables
351#ifdef debug
352    G4cout<<"G4QPiPlElCS::CCS:i,Z="<<tgZ<<",N="<<tgN<<",PDG="<<PDG<<",LP"<<lastPIN<<G4endl;
353#endif
354    PIN.push_back(lastPIN);             // Fill parameters of CS function to AMDB
355    PAR.push_back(lastPAR);             // Fill parameters of CS function to AMDB
356    CST.push_back(lastCST);             // Fill Tabulated CS function to AMDB   
357    SST.push_back(lastSST);             // Fill Tabulated first sq.slope to AMDB
358    S1T.push_back(lastS1T);             // Fill Tabulated first mantissa to AMDB
359    B1T.push_back(lastB1T);             // Fill Tabulated first slope to AMDB   
360    S2T.push_back(lastS2T);             // Fill Tabulated second mantissa to AMDB
361    B2T.push_back(lastB2T);             // Fill Tabulated second slope to AMDB   
362    S3T.push_back(lastS3T);             // Fill Tabulated third mantissa to AMDB
363    B3T.push_back(lastB3T);             // Fill Tabulated third slope to AMDB   
364    S4T.push_back(lastS4T);             // Fill Tabulated 4-th mantissa to AMDB
365    B4T.push_back(lastB4T);             // Fill Tabulated 4-th slope to AMDB   
366  } // End of creation/update of the new set of parameters and tables
367  // ============= NOW Update (if necessary) and Calculate the Cross Section ===========
368#ifdef debug
369  G4cout<<"G4QElCS::CalcCS:?update?,LP="<<lastLP<<",IN="<<lastPIN<<",ML="<<lPMax<<G4endl;
370#endif
371  if(lastLP>lastPIN && lastLP<lPMax)
372  {
373    lastPIN = GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);
374#ifdef debug
375    G4cout<<"G4QElCS::CalcCS: *updated(O)*, LP="<<lastLP<<" < IN="<<lastPIN<<G4endl;
376#endif
377  }
378#ifdef debug
379  G4cout<<"G4QElastCS::CalcCS: lastLP="<<lastLP<<",lPM="<<lPMin<<",lPIN="<<lastPIN<<G4endl;
380#endif
381  if(!onlyCS) lastTM=GetQ2max(PDG, tgZ, tgN, pMom); // Calculate (-t)_max=Q2_max (GeV2)
382#ifdef debug
383  G4cout<<"G4QElasticCrosSec::CalcCS:oCS="<<onlyCS<<",-t="<<lastTM<<", p="<<lastLP<<G4endl;
384#endif
385  if(lastLP>lPMin && lastLP<=lastPIN)   // Linear fit is made using precalculated tables
386  {
387    if(lastLP==lastPIN)
388    {
389      G4double shift=(lastLP-lPMin)/dlnP+.000001; // Log distance from lPMin
390      G4int    blast=static_cast<int>(shift); // this is a bin number of the lower edge (0)
391      if(blast<0 || blast>=nLast) G4cout<<"G4QEleastCS::CCS:b="<<blast<<","<<nLast<<G4endl;
392      lastSIG = lastCST[blast];
393      if(!onlyCS)                       // Skip the differential cross-section parameters
394      {
395        theSS  = lastSST[blast];
396        theS1  = lastS1T[blast];
397        theB1  = lastB1T[blast];
398        theS2  = lastS2T[blast];
399        theB2  = lastB2T[blast];
400        theS3  = lastS3T[blast];
401        theB3  = lastB3T[blast];
402        theS4  = lastS4T[blast];
403        theB4  = lastB4T[blast];
404      }
405#ifdef debug
406      G4cout<<"G4QPionPlusElasticCroS::CalculateCS:(E) S1="<<theS1<<", B1="<<theB1<<G4endl;
407#endif
408    }
409    else
410    {
411      G4double shift=(lastLP-lPMin)/dlnP;        // a shift from the beginning of the table
412      G4int    blast=static_cast<int>(shift);    // the lower bin number
413      if(blast<0)   blast=0;
414      if(blast>=nLast) blast=nLast-1;            // low edge of the last bin
415      shift-=blast;                              // step inside the unit bin
416      G4int lastL=blast+1;                       // the upper bin number
417      G4double SIGL=lastCST[blast];              // the basic value of the cross-section
418      lastSIG= SIGL+shift*(lastCST[lastL]-SIGL); // calculated total elastic cross-section
419#ifdef debug
420      G4cout<<"G4QElCS::CalcCrossSection: Sig="<<lastSIG<<", P="<<pMom<<", Z="<<tgZ<<", N="
421            <<tgN<<", PDG="<<PDG<<", onlyCS="<<onlyCS<<G4endl;
422#endif
423      if(!onlyCS)                       // Skip the differential cross-section parameters
424      {
425        G4double SSTL=lastSST[blast];           // the low bin of the first squared slope
426        theSS=SSTL+shift*(lastSST[lastL]-SSTL); // the basic value of the first sq.slope
427        G4double S1TL=lastS1T[blast];           // the low bin of the first mantissa
428        theS1=S1TL+shift*(lastS1T[lastL]-S1TL); // the basic value of the first mantissa
429        G4double B1TL=lastB1T[blast];           // the low bin of the first slope
430#ifdef debug
431        G4cout<<"G4QElCS::CalcCrossSection:bl="<<blast<<",ls="<<lastL<<",SL="<<S1TL<<",SU="
432              <<lastS1T[lastL]<<",BL="<<B1TL<<",BU="<<lastB1T[lastL]<<G4endl;
433#endif
434        theB1=B1TL+shift*(lastB1T[lastL]-B1TL); // the basic value of the first slope
435        G4double S2TL=lastS2T[blast];           // the low bin of the second mantissa
436        theS2=S2TL+shift*(lastS2T[lastL]-S2TL); // the basic value of the second mantissa
437        G4double B2TL=lastB2T[blast];           // the low bin of the second slope
438        theB2=B2TL+shift*(lastB2T[lastL]-B2TL); // the basic value of the second slope
439        G4double S3TL=lastS3T[blast];           // the low bin of the third mantissa
440        theS3=S3TL+shift*(lastS3T[lastL]-S3TL); // the basic value of the third mantissa
441#ifdef debug
442        G4cout<<"G4QElCS::CCS: s3l="<<S3TL<<",sh3="<<shift<<",s3h="<<lastS3T[lastL]<<",b="
443              <<blast<<",l="<<lastL<<G4endl;
444#endif
445        G4double B3TL=lastB3T[blast];           // the low bin of the third slope
446        theB3=B3TL+shift*(lastB3T[lastL]-B3TL); // the basic value of the third slope
447        G4double S4TL=lastS4T[blast];           // the low bin of the 4-th mantissa
448        theS4=S4TL+shift*(lastS4T[lastL]-S4TL); // the basic value of the 4-th mantissa
449#ifdef debug
450        G4cout<<"G4QElCS::CCS: s4l="<<S4TL<<",sh4="<<shift<<",s4h="<<lastS4T[lastL]<<",b="
451              <<blast<<",l="<<lastL<<G4endl;
452#endif
453        G4double B4TL=lastB4T[blast];           // the low bin of the 4-th slope
454        theB4=B4TL+shift*(lastB4T[lastL]-B4TL); // the basic value of the 4-th slope
455      }
456#ifdef debug
457      G4cout<<"G4QPionPlusElasticCroS::CalculateCS:(I) S1="<<theS1<<", B1="<<theB1<<G4endl;
458#endif
459    }
460  }
461  else lastSIG=GetTabValues(lastLP, PDG, tgZ, tgN); // Direct calculation beyond the table
462  if(lastSIG<0.) lastSIG = 0.;                   // @@ a Warning print can be added
463#ifdef debug
464  G4cout<<"G4QPionPlusElasticCrossSection::CalculateCS: END, onlyCS="<<onlyCS<<G4endl;
465#endif
466  return lastSIG;
467}
468
469// It has parameter sets for all tZ/tN/PDG, using them the tables can be created/updated
470G4double G4QPionPlusElasticCrossSection::GetPTables(G4double LP, G4double ILP, G4int PDG,
471                                                  G4int tgZ, G4int tgN)
472{
473  // @@ At present all nA==pA ---------> Each neucleus can have not more than 51 parameters
474  static const G4double pwd=2727;
475  const G4int n_pippel=35;               // #of parameters for pip_p-elastic (<nPoints=128)
476  //                           -0- -1-   -2- -3- -4-  -5-   -6-  -7--8--9--10-11-12--13-
477  G4double pipp_el[n_pippel]={1.27,13.,.0676,3.5,.32,.0576,.0557,2.4,6.,3.,.7,5.,74.,3.,
478                              3.4,.2,.17,.001,8.,.055,3.64,5.e-5,4000.,1500.,.46,1.2e6,
479                              3.5e6,5.e-5,1.e10,8.5e8,1.e10,1.1,3.4e6,6.8e6,0.};
480  //                         -14--15--16--17--18- -19--20-  -21-  -22-  -23- -24- -25-
481  //                          -26-   -27-  -28-  -29- -30-  -31- -32- -33- -34-
482  if(PDG == 211)
483  {
484    // -- Total pp elastic cross section cs & s1/b1 (main), s2/b2 (tail1), s3/b3 (tail2) --
485    //p2=p*p;p3=p2*p;sp=sqrt(p);p2s=p2*sp;lp=log(p);dl1=lp-(3.=par(3));p4=p2*p2; p=|3-mom|
486    //CS=2.865/p2s/(1+.0022/p2s)+(18.9+.6461*dl1*dl1+9./p)/(1.+.425*lp)/(1.+.4276/p4);
487    //   par(0)       par(7)     par(1) par(2)      par(4)      par(5)         par(6)
488    //dl2=lp-5., s1=(74.+3.*dl2*dl2)/(1+3.4/p4/p)+(.2/p2+17.*p)/(p4+.001*sp),
489    //     par(8) par(9) par(10)        par(11)   par(12)par(13)    par(14)
490    // b1=8.*p**.055/(1.+3.64/p3); s2=5.e-5+4000./(p4+1500.*p); b2=.46+1.2e6/(p4+3.5e6/sp);
491    // par(15) par(16)  par(17)     par(18) par(19)  par(20)   par(21) par(22)  par(23)
492    // s3=5.e-5+1.e10/(p4*p4+8.5e8*p2+1.e10); b3=1.1+3.4e6/(p4+6.8e6); ss=0.
493    //  par(24) par(25)     par(26)  par(27) par(28) par(29)  par(30)   par(31)
494    //
495    if(lastPAR[nLast]!=pwd) // A unique flag to avoid the repeatable definition
496    {
497      if ( tgZ == 1 && tgN == 0 )
498      {
499        for (G4int ip=0; ip<n_pippel; ip++) lastPAR[ip]=pipp_el[ip]; // PiPlus+P
500      }
501      else
502      {
503        G4double a=tgZ+tgN;
504        G4double sa=std::sqrt(a);
505        G4double ssa=std::sqrt(sa);
506        G4double asa=a*sa;
507        G4double a2=a*a;
508        G4double a3=a2*a;
509        G4double a4=a3*a;
510        G4double a5=a4*a;
511        G4double a6=a4*a2;
512        G4double a7=a6*a;
513        G4double a8=a7*a;
514        G4double a9=a8*a;
515        G4double a10=a5*a5;
516        G4double a12=a6*a6;
517        G4double a14=a7*a7;
518        G4double a16=a8*a8;
519        G4double a17=a16*a;
520        //G4double a20=a16*a4;
521        G4double a32=a16*a16;
522        // Reaction cross-section parameters (pel=peh_fit.f)
523        lastPAR[0]=(.95*sa+2.E5/a16)/(1.+17/a);                              // p1
524        lastPAR[1]=a/(1./4.4+1./a);                                          // p2
525        lastPAR[2]=.22/std::pow(a,.33);                                      // p3
526        lastPAR[3]=.5*a/(1.+3./a+1800./a8);                                  // p4
527        lastPAR[4]=3.E-4*std::pow(a,.32)/(1.+14./a2);                        // p5
528        lastPAR[5]=0.;                                                       // p6 not used
529        lastPAR[6]=(.55+.001*a2)/(1.+4.E-4*a2);                              // p7
530        lastPAR[7]=(.0002/asa+4.E-9*a)/(1.+9./a4);                           // p8
531        lastPAR[8]=0.;                                                       // p9 not used
532        // @@ the differential cross-section is parameterized separately for A>6 & A<7
533        if(a<6.5)
534        {
535          G4double a28=a16*a12;
536          // The main pre-exponent      (pel_sg)
537          lastPAR[ 9]=4000*a;                                // p1
538          lastPAR[10]=1.2e7*a8+380*a17;                      // p2
539          lastPAR[11]=.7/(1.+4.e-12*a16);                    // p3
540          lastPAR[12]=2.5/a8/(a4+1.e-16*a32);                // p4
541          lastPAR[13]=.28*a;                                 // p5
542          lastPAR[14]=1.2*a2+2.3;                            // p6
543          lastPAR[15]=3.8/a;                                 // p7
544          // The main slope             (pel_sl)
545          lastPAR[16]=.01/(1.+.0024*a5);                     // p1
546          lastPAR[17]=.2*a;                                  // p2
547          lastPAR[18]=9.e-7/(1.+.035*a5);                    // p3
548          lastPAR[19]=(42.+2.7e-11*a16)/(1.+.14*a);          // p4
549          // The main quadratic         (pel_sh)
550          lastPAR[20]=2.25*a3;                               // p1
551          lastPAR[21]=18.;                                   // p2
552          lastPAR[22]=2.4e-3*a8/(1.+2.6e-4*a7);              // p3
553          lastPAR[23]=3.5e-36*a32*a8/(1.+5.e-15*a32/a);      // p4
554          // The 1st max pre-exponent   (pel_qq)
555          lastPAR[24]=1.e5/(a8+2.5e12/a16);                  // p1
556          lastPAR[25]=8.e7/(a12+1.e-27*a28*a28);             // p2
557          lastPAR[26]=.0006*a3;                              // p3
558          // The 1st max slope          (pel_qs)
559          lastPAR[27]=10.+4.e-8*a12*a;                       // p1
560          lastPAR[28]=.114;                                  // p2
561          lastPAR[29]=.003;                                  // p3
562          lastPAR[30]=2.e-23;                                // p4
563          // The effective pre-exponent (pel_ss)
564          lastPAR[31]=1./(1.+.0001*a8);                      // p1
565          lastPAR[32]=1.5e-4/(1.+5.e-6*a12);                 // p2
566          lastPAR[33]=.03;                                   // p3
567          // The effective slope        (pel_sb)
568          lastPAR[34]=a/2;                                   // p1
569          lastPAR[35]=2.e-7*a4;                              // p2
570          lastPAR[36]=4.;                                    // p3
571          lastPAR[37]=64./a3;                                // p4
572          // The gloria pre-exponent    (pel_us)
573          lastPAR[38]=1.e8*std::exp(.32*asa);                // p1
574          lastPAR[39]=20.*std::exp(.45*asa);                 // p2
575          lastPAR[40]=7.e3+2.4e6/a5;                         // p3
576          lastPAR[41]=2.5e5*std::exp(.085*a3);               // p4
577          lastPAR[42]=2.5*a;                                 // p5
578          // The gloria slope           (pel_ub)
579          lastPAR[43]=920.+.03*a8*a3;                        // p1
580          lastPAR[44]=93.+.0023*a12;                         // p2
581#ifdef debug
582         G4cout<<"G4QElCS::CalcCS:la "<<lastPAR[38]<<", "<<lastPAR[39]<<", "<<lastPAR[40]
583               <<", "<<lastPAR[42]<<", "<<lastPAR[43]<<", "<<lastPAR[44]<<G4endl;
584#endif
585        }
586        else
587        {
588          G4double p1a10=2.2e-28*a10;
589          G4double r4a16=6.e14/a16;
590          G4double s4a16=r4a16*r4a16;
591          // a24
592          // a36
593          // The main pre-exponent      (peh_sg)
594          lastPAR[ 9]=4.5*std::pow(a,1.15);                  // p1
595          lastPAR[10]=.06*std::pow(a,.6);                    // p2
596          lastPAR[11]=.6*a/(1.+2.e15/a16);                   // p3
597          lastPAR[12]=.17/(a+9.e5/a3+1.5e33/a32);            // p4
598          lastPAR[13]=(.001+7.e-11*a5)/(1.+4.4e-11*a5);      // p5
599          lastPAR[14]=(p1a10*p1a10+2.e-29)/(1.+2.e-22*a12);  // p6
600          // The main slope             (peh_sl)
601          lastPAR[15]=400./a12+2.e-22*a9;                    // p1
602          lastPAR[16]=1.e-32*a12/(1.+5.e22/a14);             // p2
603          lastPAR[17]=1000./a2+9.5*sa*ssa;                   // p3
604          lastPAR[18]=4.e-6*a*asa+1.e11/a16;                 // p4
605          lastPAR[19]=(120./a+.002*a2)/(1.+2.e14/a16);       // p5
606          lastPAR[20]=9.+100./a;                             // p6
607          // The main quadratic         (peh_sh)
608          lastPAR[21]=.002*a3+3.e7/a6;                       // p1
609          lastPAR[22]=7.e-15*a4*asa;                         // p2
610          lastPAR[23]=9000./a4;                              // p3
611          // The 1st max pre-exponent   (peh_qq)
612          lastPAR[24]=.0011*asa/(1.+3.e34/a32/a4);           // p1
613          lastPAR[25]=1.e-5*a2+2.e14/a16;                    // p2
614          lastPAR[26]=1.2e-11*a2/(1.+1.5e19/a12);            // p3
615          lastPAR[27]=.016*asa/(1.+5.e16/a16);               // p4
616          // The 1st max slope          (peh_qs)
617          lastPAR[28]=.002*a4/(1.+7.e7/std::pow(a-6.83,14)); // p1
618          lastPAR[29]=2.e6/a6+7.2/std::pow(a,.11);           // p2
619          lastPAR[30]=11.*a3/(1.+7.e23/a16/a8);              // p3
620          lastPAR[31]=100./asa;                              // p4
621          // The 2nd max pre-exponent   (peh_ss)
622          lastPAR[32]=(.1+4.4e-5*a2)/(1.+5.e5/a4);           // p1
623          lastPAR[33]=3.5e-4*a2/(1.+1.e8/a8);                // p2
624          lastPAR[34]=1.3+3.e5/a4;                           // p3
625          lastPAR[35]=500./(a2+50.)+3;                       // p4
626          lastPAR[36]=1.e-9/a+s4a16*s4a16;                   // p5
627          // The 2nd max slope          (peh_sb)
628          lastPAR[37]=.4*asa+3.e-9*a6;                       // p1
629          lastPAR[38]=.0005*a5;                              // p2
630          lastPAR[39]=.002*a5;                               // p3
631          lastPAR[40]=10.;                                   // p4
632          // The effective pre-exponent (peh_us)
633          lastPAR[41]=.05+.005*a;                            // p1
634          lastPAR[42]=7.e-8/sa;                              // p2
635          lastPAR[43]=.8*sa;                                 // p3
636          lastPAR[44]=.02*sa;                                // p4
637          lastPAR[45]=1.e8/a3;                               // p5
638          lastPAR[46]=3.e32/(a32+1.e32);                     // p6
639          // The effective slope        (peh_ub)
640          lastPAR[47]=24.;                                   // p1
641          lastPAR[48]=20./sa;                                // p2
642          lastPAR[49]=7.e3*a/(sa+1.);                        // p3
643          lastPAR[50]=900.*sa/(1.+500./a3);                  // p4
644#ifdef debug
645         G4cout<<"G4QElCS::CalcCS:ha "<<lastPAR[41]<<", "<<lastPAR[42]<<", "<<lastPAR[43]
646               <<", "<<lastPAR[44]<<", "<<lastPAR[45]<<", "<<lastPAR[46]<<G4endl;
647#endif
648        }
649        // Parameter for lowEnergyNeutrons
650        lastPAR[51]=1.e15+2.e27/a4/(1.+2.e-18*a16);
651      }
652      lastPAR[nLast]=pwd;
653      // and initialize the zero element of the table
654      G4double lp=lPMin;                                      // ln(momentum)
655      G4bool memCS=onlyCS;                                    // ??
656      onlyCS=false;
657      lastCST[0]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables
658      onlyCS=memCS;
659      lastSST[0]=theSS;
660      lastS1T[0]=theS1;
661      lastB1T[0]=theB1;
662      lastS2T[0]=theS2;
663      lastB2T[0]=theB2;
664      lastS3T[0]=theS3;
665      lastB3T[0]=theB3;
666      lastS4T[0]=theS4;
667      lastB4T[0]=theB4;
668#ifdef debug
669      G4cout<<"G4QPionPlusElasticCrossSection::GetPTables:ip=0(init), lp="<<lp<<",S1="
670            <<theS1<<",B1="<<theB1<<",S2="<<theS2<<",B2="<<theB3<<",S3="<<theS3
671            <<",B3="<<theB3<<",S4="<<theS4<<",B4="<<theB4<<G4endl;
672#endif
673    }
674    if(LP>ILP)
675    {
676      G4int ini = static_cast<int>((ILP-lPMin+.000001)/dlnP)+1; // already inited till this
677      if(ini<0) ini=0;
678      if(ini<nPoints)
679      {
680        G4int fin = static_cast<int>((LP-lPMin)/dlnP)+1; // final bin of initialization
681        if(fin>=nPoints) fin=nLast;               // Limit of the tabular initialization
682        if(fin>=ini)
683        {
684          G4double lp=0.;
685          for(G4int ip=ini; ip<=fin; ip++)        // Calculate tabular CS,S1,B1,S2,B2,S3,B3
686          {
687            lp=lPMin+ip*dlnP;                     // ln(momentum)
688            G4bool memCS=onlyCS;
689            onlyCS=false;
690            lastCST[ip]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables (ret CS)
691            onlyCS=memCS;
692            lastSST[ip]=theSS;
693            lastS1T[ip]=theS1;
694            lastB1T[ip]=theB1;
695            lastS2T[ip]=theS2;
696            lastB2T[ip]=theB2;
697            lastS3T[ip]=theS3;
698            lastB3T[ip]=theB3;
699            lastS4T[ip]=theS4;
700            lastB4T[ip]=theB4;
701#ifdef debug
702            G4cout<<"G4QPionPlusElasticCrossSection::GetPTables:ip="<<ip<<",lp="<<lp
703                  <<",S1="<<theS1<<",B1="<<theB1<<",S2="<<theS2<<",B2="<<theB2<<",S3="
704                  <<theS3<<",B3="<<theB3<<",S4="<<theS4<<",B4="<<theB4<<G4endl;
705#endif
706          }
707          return lp;
708        }
709        else G4cout<<"*Warning*G4QPionPlusElasticCrossSection::GetPTables: PDG="<<PDG
710                   <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<" > fin="<<fin<<", LP="<<LP
711                   <<" > ILP="<<ILP<<" nothing is done!"<<G4endl;
712      }
713      else G4cout<<"*Warning*G4QPionPlusElasticCrossSection::GetPTables: PDG="<<PDG<<", Z="
714                 <<tgZ<<", N="<<tgN<<", i="<<ini<<">= max="<<nPoints<<", LP="<<LP
715                 <<" > ILP="<<ILP<<", lPMax="<<lPMax<<" nothing is done!"<<G4endl;
716    }
717#ifdef debug
718    else G4cout<<"*Warning*G4QPionPlusElasticCrossSection::GetPTabl:PDG="<<PDG<<", Z="<<tgZ
719               <<", N="<<tgN<<", LP="<<LP<<" <= ILP="<<ILP<<" nothing is done!"<<G4endl;
720#endif
721  }
722  else
723  {
724    G4cout<<"*Error*G4QPionPlusElasticCrossSection::GetPTables: PDG="<<PDG<<", Z="<<tgZ
725          <<", N="<<tgN<<", while it is defined only for PDG=211"<<G4endl;
726    throw G4QException("G4QPionPlusElasticCrossSection::GetPTables:only pipA implemented");
727  }
728  return ILP;
729}
730
731// Returns Q2=-t in independent units (MeV^2) (all internal calculations are in GeV)
732G4double G4QPionPlusElasticCrossSection::GetExchangeT(G4int tgZ, G4int tgN, G4int PDG)
733{
734  static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
735  static const G4double third=1./3.;
736  static const G4double fifth=1./5.;
737  static const G4double sevth=1./7.;
738#ifdef tdebug
739  G4cout<<"G4QPiPlElCS::GetExcT: F="<<onlyCS<<",Z="<<tgZ<<",N="<<tgN<<",PDG="<<PDG<<G4endl;
740#endif
741  if(PDG!= 211)G4cout<<"*Warning*G4QPionPlusElasticCrossSection::GetExT:PDG="<<PDG<<G4endl;
742  if(onlyCS)G4cout<<"*Warning*G4QPionPlusElasticCrossSection::GetExchanT:onlyCS=1"<<G4endl;
743  if(lastLP<-4.3) return lastTM*GeVSQ*G4UniformRand();// S-wave for p<14 MeV/c (kinE<.1MeV)
744  G4double q2=0.;
745  if(tgZ==1 && tgN==0)                // ===> p+p=p+p
746  {
747#ifdef tdebug
748    G4cout<<"G4QElasticCS::GetExchangeT: TM="<<lastTM<<",S1="<<theS1<<",B1="<<theB1<<",S2="
749          <<theS2<<",B2="<<theB2<<",S3="<<theS3<<",B3="<<theB3<<",GeV2="<<GeVSQ<<G4endl;
750#endif
751    G4double E1=lastTM*theB1;
752    G4double R1=(1.-std::exp(-E1));
753#ifdef tdebug
754    G4double ts1=-std::log(1.-R1)/theB1;
755    G4double ds1=std::fabs(ts1-lastTM)/lastTM;
756    if(ds1>.0001)
757      G4cout<<"*Warning*G4QElCS::GetExT:1p "<<ts1<<"#"<<lastTM<<",d="<<ds1
758            <<",R1="<<R1<<",E1="<<E1<<G4endl;
759#endif
760    G4double E2=lastTM*theB2;
761    G4double R2=(1.-std::exp(-E2*E2*E2));
762#ifdef tdebug
763    G4double ts2=std::pow(-std::log(1.-R2),.333333333)/theB2;
764    G4double ds2=std::fabs(ts2-lastTM)/lastTM;
765    if(ds2>.0001)
766      G4cout<<"*Warning*G4QElCS::GetExT:2p "<<ts2<<"#"<<lastTM<<",d="<<ds2
767            <<",R2="<<R2<<",E2="<<E2<<G4endl;
768#endif
769    G4double E3=lastTM*theB3;
770    G4double R3=(1.-std::exp(-E3));
771#ifdef tdebug
772    G4double ts3=-std::log(1.-R3)/theB3;
773    G4double ds3=std::fabs(ts3-lastTM)/lastTM;
774    if(ds3>.0001)
775      G4cout<<"*Warning*G4QElCS::GetExT:3p "<<ts3<<"#"<<lastTM<<",d="<<ds3
776            <<",R3="<<R1<<",E3="<<E3<<G4endl;
777#endif
778    G4double I1=R1*theS1/theB1;
779    G4double I2=R2*theS2;
780    G4double I3=R3*theS3;
781    G4double I12=I1+I2;
782    G4double rand=(I12+I3)*G4UniformRand();
783    if     (rand<I1 )
784    {
785      G4double ran=R1*G4UniformRand();
786      if(ran>1.) ran=1.;
787      q2=-std::log(1.-ran)/theB1;
788    }
789    else if(rand<I12)
790    {
791      G4double ran=R2*G4UniformRand();
792      if(ran>1.) ran=1.;
793      q2=-std::log(1.-ran);
794      if(q2<0.) q2=0.;
795      q2=std::pow(q2,third)/theB2;
796    }
797    else
798    {
799      G4double ran=R3*G4UniformRand();
800      if(ran>1.) ran=1.;
801      q2=-std::log(1.-ran)/theB3;
802    }
803  }
804  else
805  {
806    G4double a=tgZ+tgN;
807#ifdef tdebug
808    G4cout<<"G4QElCS::GetExT: a="<<a<<",t="<<lastTM<<",S1="<<theS1<<",B1="<<theB1<<",SS="
809          <<theSS<<",S2="<<theS2<<",B2="<<theB2<<",S3="<<theS3<<",B3="<<theB3<<",S4="
810          <<theS4<<",B4="<<theB4<<G4endl;
811#endif
812    G4double E1=lastTM*(theB1+lastTM*theSS);
813    G4double R1=(1.-std::exp(-E1));
814    G4double tss=theSS+theSS; // for future solution of quadratic equation (imediate check)
815#ifdef tdebug
816    G4double ts1=-std::log(1.-R1)/theB1;
817    if(std::fabs(tss)>1.e-7) ts1=(std::sqrt(theB1*(theB1+(tss+tss)*ts1))-theB1)/tss;
818    G4double ds1=(ts1-lastTM)/lastTM;
819    if(ds1>.0001)
820      G4cout<<"*Warning*G4QElCS::GetExT:1a "<<ts1<<"#"<<lastTM<<",d="<<ds1
821            <<",R1="<<R1<<",E1="<<E1<<G4endl;
822#endif
823    G4double tm2=lastTM*lastTM;
824    G4double E2=lastTM*tm2*theB2;                   // power 3 for lowA, 5 for HighA (1st)
825    if(a>6.5)E2*=tm2;                               // for heavy nuclei
826    G4double R2=(1.-std::exp(-E2));
827#ifdef tdebug
828    G4double ts2=-std::log(1.-R2)/theB2;
829    if(a<6.5)ts2=std::pow(ts2,third);
830    else     ts2=std::pow(ts2,fifth);
831    G4double ds2=std::fabs(ts2-lastTM)/lastTM;
832    if(ds2>.0001)
833      G4cout<<"*Warning*G4QElCS::GetExT:2a "<<ts2<<"#"<<lastTM<<",d="<<ds2
834            <<",R2="<<R2<<",E2="<<E2<<G4endl;
835#endif
836    G4double E3=lastTM*theB3;
837    if(a>6.5)E3*=tm2*tm2*tm2;                       // power 1 for lowA, 7 (2nd) for HighA
838    G4double R3=(1.-std::exp(-E3));
839#ifdef tdebug
840    G4double ts3=-std::log(1.-R3)/theB3;
841    if(a>6.5)ts3=std::pow(ts3,sevth);
842    G4double ds3=std::fabs(ts3-lastTM)/lastTM;
843    if(ds3>.0001)
844      G4cout<<"*Warning*G4QElCS::GetExT:3a "<<ts3<<"#"<<lastTM<<",d="<<ds3
845            <<",R3="<<R3<<",E3="<<E3<<G4endl;
846#endif
847    G4double E4=lastTM*theB4;
848    G4double R4=(1.-std::exp(-E4));
849#ifdef tdebug
850    G4double ts4=-std::log(1.-R4)/theB4;
851    G4double ds4=std::fabs(ts4-lastTM)/lastTM;
852    if(ds4>.0001)
853      G4cout<<"*Warning*G4QElCS::GetExT:4a "<<ts4<<"#"<<lastTM<<",d="<<ds4
854            <<",R4="<<R4<<",E4="<<E4<<G4endl;
855#endif
856    G4double I1=R1*theS1;
857    G4double I2=R2*theS2;
858    G4double I3=R3*theS3;
859    G4double I4=R4*theS4;
860    G4double I12=I1+I2;
861    G4double I13=I12+I3;
862    G4double rand=(I13+I4)*G4UniformRand();
863#ifdef tdebug
864    G4cout<<"G4QElCS::GtExT:1="<<I1<<",2="<<I2<<",3="<<I3<<",4="<<I4<<",r="<<rand<<G4endl;
865#endif
866    if(rand<I1)
867    {
868      G4double ran=R1*G4UniformRand();
869      if(ran>1.) ran=1.;
870      q2=-std::log(1.-ran)/theB1;
871      if(std::fabs(tss)>1.e-7) q2=(std::sqrt(theB1*(theB1+(tss+tss)*q2))-theB1)/tss;
872#ifdef tdebug
873      G4cout<<"G4QElCS::GetExT:Q2="<<q2<<",ss="<<tss/2<<",b1="<<theB1<<",t1="<<ts1<<G4endl;
874#endif
875    }
876    else if(rand<I12)
877    {
878      G4double ran=R2*G4UniformRand();
879      if(ran>1.) ran=1.;
880      q2=-std::log(1.-ran)/theB2;
881      if(q2<0.) q2=0.;
882      if(a<6.5) q2=std::pow(q2,third);
883      else      q2=std::pow(q2,fifth);
884#ifdef tdebug
885      G4cout<<"G4QElCS::GetExT: Q2="<<q2<<", r2="<<R2<<", b2="<<theB2<<",t2="<<ts2<<G4endl;
886#endif
887    }
888    else if(rand<I13)
889    {
890      G4double ran=R3*G4UniformRand();
891      if(ran>1.) ran=1.;
892      q2=-std::log(1.-ran)/theB3;
893      if(q2<0.) q2=0.;
894      if(a>6.5) q2=std::pow(q2,sevth);
895#ifdef tdebug
896      G4cout<<"G4QElCS::GetExT:Q2="<<q2<<", r3="<<R2<<", b3="<<theB2<<",t3="<<ts2<<G4endl;
897#endif
898    }
899    else
900    {
901      G4double ran=R4*G4UniformRand();
902      if(ran>1.) ran=1.;
903      q2=-std::log(1.-ran)/theB4;
904      if(a<6.5) q2=lastTM-q2;                    // u reduced for lightA (starts from 0)
905#ifdef tdebug
906      G4cout<<"G4QElCS::GetExT:Q2="<<q2<<",m="<<lastTM<<",b4="<<theB3<<",t4="<<ts3<<G4endl;
907#endif
908    }
909  }
910  if(q2<0.) q2=0.;
911  if(!(q2>=-1.||q2<=1.)) G4cout<<"*NAN*G4QElasticCrossSect::GetExchangeT: -t="<<q2<<G4endl;
912  if(q2>lastTM)
913  {
914#ifdef tdebug
915    G4cout<<"*Warning*G4QElasticCrossSect::GetExT:-t="<<q2<<">"<<lastTM<<G4endl;
916#endif
917    q2=lastTM;
918  }
919  return q2*GeVSQ;
920}
921
922// Returns B in independent units (MeV^-2) (all internal calculations are in GeV) see ExT
923G4double G4QPionPlusElasticCrossSection::GetSlope(G4int tgZ, G4int tgN, G4int PDG)
924{
925  static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
926#ifdef tdebug
927  G4cout<<"G4QElasticCS::GetSlope:"<<onlyCS<<", Z="<<tgZ<<",N="<<tgN<<",PDG="<<PDG<<G4endl;
928#endif
929  if(onlyCS)G4cout<<"Warning*G4QPionPlusElasticCrossSection::GetSlope:onlyCS=true"<<G4endl;
930  if(lastLP<-4.3) return 0.;          // S-wave for p<14 MeV/c (kinE<.1MeV)
931  if(PDG != 211)
932  {
933    G4cout<<"*Error*G4QPionPlusElasticCrossSection::GetSlope: PDG="<<PDG<<", Z="<<tgZ
934          <<", N="<<tgN<<", while it is defined only for PDG=211"<<G4endl;
935    throw G4QException("G4QPionPlusElasticCrossSection::GetSlope: pipA are implemented");
936  }
937  if(theB1<0.) theB1=0.;
938  if(!(theB1>=-1.||theB1<=1.))G4cout<<"*NAN*G4QElasticCrossSect::Getslope:"<<theB1<<G4endl;
939  return theB1/GeVSQ;
940}
941
942// Returns half max(Q2=-t) in independent units (MeV^2)
943G4double G4QPionPlusElasticCrossSection::GetHMaxT()
944{
945  static const G4double HGeVSQ=gigaelectronvolt*gigaelectronvolt/2.;
946  return lastTM*HGeVSQ;
947}
948
949// lastLP is used, so calculating tables, one need to remember and then recover lastLP
950G4double G4QPionPlusElasticCrossSection::GetTabValues(G4double lp, G4int PDG, G4int tgZ,
951                                                    G4int tgN)
952{
953  if(PDG!= 211)G4cout<<"Warning*G4QPionPlusElasticCrossSection::GetTabV:PDG="<<PDG<<G4endl;
954  if(tgZ<0 || tgZ>92)
955  {
956    G4cout<<"*Warning*G4QPionPlusElCS::GetTabValue:(1-92) No isotopes for Z="<<tgZ<<G4endl;
957    return 0.;
958  }
959  G4int iZ=tgZ-1; // Z index
960  if(iZ<0)
961  {
962    iZ=0;         // conversion of the neutron target to the proton target
963    tgZ=1;
964    tgN=0;
965  }
966  //if(nN[iZ][0] < 0)
967  //{
968#ifdef isodebug
969  //  G4cout<<"*Warning*G4QElasticCS::GetTabValue: No isotopes for Z="<<tgZ<<G4endl;
970#endif
971  //  return 0.;
972  //}
973#ifdef debug
974  G4cout<<"G4QElasticCS::GetTabVal: lp="<<lp<<",Z="<<tgZ<<",N="<<tgN<<",PDG="<<PDG<<G4endl;
975#endif
976  G4double p=std::exp(lp);              // momentum
977  G4double sp=std::sqrt(p);             // sqrt(p)
978  G4double p2=p*p;
979  G4double p3=p2*p;
980  G4double p4=p2*p2;
981  if ( tgZ == 1 && tgN == 0 ) // PiPlus+P
982  {
983    G4double dl2=lp-lastPAR[11];
984    theSS=lastPAR[34];
985    theS1=(lastPAR[12]+lastPAR[13]*dl2*dl2)/(1.+lastPAR[14]/p4/p)+
986          (lastPAR[15]/p2+lastPAR[16]*p)/(p4+lastPAR[17]*sp);
987    theB1=lastPAR[18]*std::pow(p,lastPAR[19])/(1.+lastPAR[20]/p3);
988    theS2=lastPAR[21]+lastPAR[22]/(p4+lastPAR[23]*p);
989    theB2=lastPAR[24]+lastPAR[25]/(p4+lastPAR[26]/sp); 
990    theS3=lastPAR[27]+lastPAR[28]/(p4*p4+lastPAR[29]*p2+lastPAR[30]);
991    theB3=lastPAR[31]+lastPAR[32]/(p4+lastPAR[33]); 
992    theS4=0.;
993    theB4=0.; 
994#ifdef tdebug
995    G4cout<<"G4QElasticCS::GetTableValues:(pp) TM="<<lastTM<<",S1="<<theS1<<",B1="<<theB1
996          <<",S2="<<theS2<<",B2="<<theB2<<",S3="<<theS1<<",B3="<<theB1<<G4endl;
997#endif
998    // Returns the total elastic pip-p cross-section (to avoid spoiling lastSIG)
999    G4double dl1=lp+lastPAR[0];  // lr
1000    G4double lr2=dl1*dl1;        // lr2
1001    G4double dl3=lp-lastPAR[3];  // ld
1002    G4double dl4=lp-lastPAR[4];  // lm
1003    return lastPAR[1]/(lr2+lr2*lr2+lastPAR[2])+(lastPAR[6]*dl3*dl3+lastPAR[7]+
1004           lastPAR[8]/sp)/(1.+lastPAR[9]/p4)+lastPAR[10]/(dl4*dl4+lastPAR[5]);
1005  }
1006  else
1007  {
1008    G4double p5=p4*p;
1009    G4double p6=p5*p;
1010    G4double p8=p6*p2;
1011    G4double p10=p8*p2;
1012    G4double p12=p10*p2;
1013    G4double p16=p8*p8;
1014    //G4double p24=p16*p8;
1015    G4double dl=lp-5.;
1016    G4double a=tgZ+tgN;
1017    G4double pah=std::pow(p,a/2);
1018    G4double pa=pah*pah;
1019    G4double pa2=pa*pa;
1020    if(a<6.5)
1021    {
1022      theS1=lastPAR[9]/(1.+lastPAR[10]*p4*pa)+lastPAR[11]/(p4+lastPAR[12]*p4/pa2)+
1023            (lastPAR[13]*dl*dl+lastPAR[14])/(1.+lastPAR[15]/p2);
1024      theB1=(lastPAR[16]+lastPAR[17]*p2)/(p4+lastPAR[18]/pah)+lastPAR[19];
1025      theSS=lastPAR[20]/(1.+lastPAR[21]/p2)+lastPAR[22]/(p6/pa+lastPAR[23]/p16);
1026      theS2=lastPAR[24]/(pa/p2+lastPAR[25]/p4)+lastPAR[26];
1027      theB2=lastPAR[27]*std::pow(p,lastPAR[28])+lastPAR[29]/(p8+lastPAR[30]/p16);
1028      theS3=lastPAR[31]/(pa*p+lastPAR[32]/pa)+lastPAR[33];
1029      theB3=lastPAR[34]/(p3+lastPAR[35]/p6)+lastPAR[36]/(1.+lastPAR[37]/p2);
1030      theS4=p2*(pah*lastPAR[38]*std::exp(-pah*lastPAR[39])+
1031                lastPAR[40]/(1.+lastPAR[41]*std::pow(p,lastPAR[42])));
1032      theB4=lastPAR[43]*pa/p2/(1.+pa*lastPAR[44]);
1033#ifdef tdebug
1034      G4cout<<"G4QElCS::GetTabV: lA, p="<<p<<",S1="<<theS1<<",B1="<<theB1<<",SS="<<theSS
1035            <<",S2="<<theS2<<",B2="<<theB2<<",S3="<<theS3<<",B3="<<theB3<<",S4="<<theS4
1036            <<",B4="<<theB4<<G4endl;
1037#endif
1038    }
1039    else
1040    {
1041      theS1=lastPAR[9]/(1.+lastPAR[10]/p4)+lastPAR[11]/(p4+lastPAR[12]/p2)+
1042            lastPAR[13]/(p5+lastPAR[14]/p16);
1043      theB1=(lastPAR[15]/p8+lastPAR[19])/(p+lastPAR[16]/std::pow(p,lastPAR[20]))+
1044            lastPAR[17]/(1.+lastPAR[18]/p4);
1045      theSS=lastPAR[21]/(p4/std::pow(p,lastPAR[23])+lastPAR[22]/p4);
1046      theS2=lastPAR[24]/p4/(std::pow(p,lastPAR[25])+lastPAR[26]/p12)+lastPAR[27];
1047      theB2=lastPAR[28]/std::pow(p,lastPAR[29])+lastPAR[30]/std::pow(p,lastPAR[31]);
1048      theS3=lastPAR[32]/std::pow(p,lastPAR[35])/(1.+lastPAR[36]/p12)+
1049            lastPAR[33]/(1.+lastPAR[34]/p6);
1050      theB3=lastPAR[37]/p8+lastPAR[38]/p2+lastPAR[39]/(1.+lastPAR[40]/p8);
1051      theS4=(lastPAR[41]/p4+lastPAR[46]/p)/(1.+lastPAR[42]/p10)+
1052            (lastPAR[43]+lastPAR[44]*dl*dl)/(1.+lastPAR[45]/p12);
1053      theB4=lastPAR[47]/(1.+lastPAR[48]/p)+lastPAR[49]*p4/(1.+lastPAR[50]*p5);
1054#ifdef tdebug
1055      G4cout<<"G4QElCS::GetTabV: hA, p="<<p<<",S1="<<theS1<<",B1="<<theB1<<",SS="<<theSS
1056            <<",S2="<<theS2<<",B2="<<theB2<<",S3="<<theS3<<",B3="<<theB3<<",S4="<<theS4
1057            <<",B4="<<theB4<<G4endl;
1058#endif
1059    }
1060    // Returns the total elastic (n/p)A cross-section (to avoid spoiling lastSIG)
1061#ifdef tdebug
1062    G4cout<<"G4QElCS::GetTabV: PDG="<<PDG<<",P="<<p<<",N="<<tgN<<",Z="<<tgZ<<G4endl;
1063#endif
1064    //         p1               p2              p3
1065    return (lastPAR[0]*dl*dl+lastPAR[1])/(1.+lastPAR[2]/p8)+
1066           lastPAR[3]/(p4+lastPAR[4]/p3)+lastPAR[6]/(p4+lastPAR[7]/p4);
1067    //        p4             p5               p7           p8
1068  }
1069  return 0.;
1070} // End of GetTableValues
1071
1072// Returns max -t=Q2 (GeV^2) for the momentum pP(GeV) and the target nucleus (tgN,tgZ)
1073G4double G4QPionPlusElasticCrossSection::GetQ2max(G4int PDG, G4int tgZ, G4int tgN,
1074                                                G4double pP)
1075{
1076  //static const G4double mNeut= G4QPDGCode(2112).GetMass()*.001; // MeV to GeV
1077  static const G4double mPi= G4QPDGCode(211).GetMass()*.001; // pion mass MeV to GeV
1078  //static const G4double mProt= G4QPDGCode(2212).GetMass()*.001; // MeV to GeV
1079  //static const G4double mLamb= G4QPDGCode(3122).GetMass()*.001; // MeV to GeV
1080  //static const G4double mHe3 = G4QPDGCode(2112).GetNuclMass(2,1,0)*.001; // MeV to GeV
1081  //static const G4double mAlph = G4QPDGCode(2112).GetNuclMass(2,2,0)*.001; // MeV to GeV
1082  //static const G4double mDeut = G4QPDGCode(2112).GetNuclMass(1,1,0)*.001; // MeV to GeV
1083  static const G4double mPi2= mPi*mPi;
1084  //static const G4double mProt2= mProt*mProt;
1085  //static const G4double mNeut2= mNeut*mNeut;
1086  //static const G4double mDeut2= mDeut*mDeut;
1087  G4double pP2=pP*pP;                                 // squared momentum of the projectile
1088  if(tgZ || tgN>-1)                                   // ---> pipA
1089  {
1090    G4double mt=G4QPDGCode(90000000+tgZ*1000+tgN).GetMass()*.001; // Target mass in GeV
1091    G4double dmt=mt+mt;
1092    G4double s=dmt*std::sqrt(pP2+mPi2)+mPi2+mt*mt;    // Mondelstam s
1093    return dmt*dmt*pP2/s;
1094  }
1095  else
1096  {
1097    G4cout<<"*Error*G4QPionPlusElasticCrossSection::GetQ2max:PDG="<<PDG<<", Z="<<tgZ<<",N="
1098          <<tgN<<", while it is defined only for p projectiles & Z_target>0"<<G4endl;
1099    throw G4QException("G4QPionPlusElasticCrossSection::GetQ2max: only pipA implemented");
1100  }
1101}
Note: See TracBrowser for help on using the repository browser.