source: trunk/source/processes/hadronic/models/chiral_inv_phase_space/interface/include/G4QCaptureAtRest.hh @ 1071

Last change on this file since 1071 was 1055, checked in by garnier, 15 years ago

maj sur la beta de geant 4.9.3

File size: 10.4 KB
RevLine 
[819]1//
2// ********************************************************************
3// * License and Disclaimer                                           *
4// *                                                                  *
5// * The  Geant4 software  is  copyright of the Copyright Holders  of *
6// * the Geant4 Collaboration.  It is provided  under  the terms  and *
7// * conditions of the Geant4 Software License,  included in the file *
8// * LICENSE and available at  http://cern.ch/geant4/license .  These *
9// * include a list of copyright holders.                             *
10// *                                                                  *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work  make  any representation or  warranty, express or implied, *
14// * regarding  this  software system or assume any liability for its *
15// * use.  Please see the license in the file  LICENSE  and URL above *
16// * for the full disclaimer and the limitation of liability.         *
17// *                                                                  *
18// * This  code  implementation is the result of  the  scientific and *
19// * technical work of the GEANT4 collaboration.                      *
20// * By using,  copying,  modifying or  distributing the software (or *
21// * any work based  on the software)  you  agree  to acknowledge its *
22// * use  in  resulting  scientific  publications,  and indicate your *
23// * acceptance of all terms of the Geant4 Software license.          *
24// ********************************************************************
25//
[1055]26// $Id: G4QCaptureAtRest.hh,v 1.7 2009/02/23 09:49:24 mkossov Exp $
27// GEANT4 tag $Name: geant4-09-03-beta-cand-01 $
[819]28//
29//      ---------------- G4QCaptureAtRest header ----------------
30//                 by Mikhail Kossov, December 2003.
[1055]31// Header of G4QCaptureAtRest class of the CHIPS Simulation Branch in GEANT4
[819]32// -------------------------------------------------------------------------------
33// This is a unique CHIPS class for the Nuclear Capture At Rest Prosesses.
34// -------------------------------------------------------------------------------
35// At present (Dec.03) only pi-, K- and antiNucleon capture is implemented, which
36// are the most crucial for the in matter simulation. The hyperon capture (Sigma-,
37// Xi-, Omega-, antiSigma+) is implemented, but not tested and it is not clear how
38// frequently this kind of interaction takes place in the simulation of the hadronic
39// showers. The antiNeutron Capture At Rest is implemented by this G4QCaptureAtRest
40// class, but it is not clear how the anti-neutrons are stopped in Geant4 tracking.
41// It can be stopped only by interactions with electrons, as the annihilation
42// cross section is huge and any interaction with nucleus results in annihilation.
43// --> The mu-&tau- Capture At Rest (mu-,nu)&(mu-,nu) are weak processes, which must
44// be simulated together with the reversed Betha decay (e-,nu). While mu- capture is
45// similar to the pi- capture from the nuclear fragmentation point of view (the energy
46// scale is shrinked mecause m_mu<m_pi and a part of energy is lost because of the
47// neutrino radiation), the time scale of the mu- capture process is not clear,
48// but it is clear, that it is well delayed. By this reason the mu- capture is not
49// included in the G4QCaptureAtRest and must be implemented in the "LongLivingDecay"
50// branch of simulation, which includes excited states of nuclei and short living
51// isotopes. On the "Fast Simulation" Level all radioactiv isotopes, long living
52// nuclear excitations, mu-atoms etc, which can be important for the background
53// signals, must be collected in the continuous database and simulated separately.
54// --> CHIPS is SU(3) event generator, so it does not include reactions with the
55// heavy (c,b,t) quarks involved such as tau- or antiDs-, which can be simulated
56// only by SU(6) QUIPS (QUark Invariant Phase Space) model.-December 2003.M.Kossov.-
57// -------------------------------------------------------------------------------
58// All algorithms are similar: the captured particle is absorbed by a nuclear cluster
59// with the subsequent Quark Exchange nuclear fragmentation. The Anti-Proton (antiSigma+)
60// Capture algorithm is more complicated: the anti-baryon annihilates with the quasyfree
61// nucleons on the nuclear periphery. The peripheral interaction results in a number
62// of mesons. A part of them misses the nucleus and comes directly to the output,
63// while others create Multy Quasmon Excitation in the nucleus with the subsequent
64// Quark Excange Fragmentation of the nucleus. At present the two step mechanism of
65// the antiProton-Nucleus interaction is hardwired in the G4QEnvironment class, but
66// with time the first step of the interaction can be moved to this G4QCaptureAtRest
67// class, to make the G4QEnvirement class simpler and better defined. This is
68// necessary because the G4QEnvironment class is going to loos the previlage of
69// the CHIPS Head Class (as previously the G4Quasmon class lost it) and G4QCollision
70// class is going to be the CHIPS Head Class, where a few Nuclear Environments can
71// exist (e.g. the Nuclear Environment of the Projectile Nucleus and the Nuclear
72// Environment of the Target Nucleus). By the way the antiProton-H1 interaction At
73// Rest (CHIPSI) can be still simulated with only the G4Quasmon class, as this
74// reaction does not have any nuclear environment.- December 2003.Mikhail Kossov.-
75// --------------------------------------------------------------------------------
76// ****************************************************************************************
77// ********* This HEADER is temporary moved from the photolepton_hadron directory *********
78// ******* DO NOT MAKE ANY CHANGE! With time it'll move back to photolepton...(M.K.) ******
79// ****************************************************************************************
[1055]80// Short Description: This is a universal process for nuclear capture
81// (including annihilation) of all negative particles (negative hadrons,
82// negative leptons: mu- & tau-). It can be used for the cold neutron
83// capture, but somebody should decide what is the probability (defined
84// by the capture cross-section and atomic material properties) to switch
85// the cold neutron to the at-rest neutron. - M.K.2009.
86// ----------------------------------------------------------------------
[819]87
88#ifndef G4QCaptureAtRest_hh
89#define G4QCaptureAtRest_hh
90
91// GEANT4 Headers
92#include "globals.hh"
93#include "G4ios.hh"
94#include "G4VRestProcess.hh"
95#include "G4ParticleTypes.hh"
96#include "G4VParticleChange.hh"
97#include "G4ParticleDefinition.hh"
98#include "G4DynamicParticle.hh"
99#include "G4NucleiPropertiesTable.hh"
100#include "Randomize.hh"
101#include "G4ThreeVector.hh"
102#include "G4LorentzVector.hh"
[962]103#include "G4HadronicProcessType.hh"
[819]104
105// CHIPS Headers
106#include "G4QEnvironment.hh"
107#include "G4QIsotope.hh"
108#include "G4QPDGToG4Particle.hh"
109//<vector> is included in G4QIsotope.hh
110//#include <vector>
111
112class G4QCaptureAtRest : public G4VRestProcess
113{ 
114private:
115
116  // Hide assignment operator as private
117  G4QCaptureAtRest& operator=(const G4QCaptureAtRest &right);
118
119  // Copy constructor
120  G4QCaptureAtRest(const G4QCaptureAtRest& );
121
122public:
123
124  // Constructor
125  G4QCaptureAtRest(const G4String& processName ="CHIPSNuclearAbsorptionAtRest");
126
127  // Destructor
[962]128  virtual ~G4QCaptureAtRest();
[819]129
[962]130  virtual G4bool IsApplicable(const G4ParticleDefinition& particle);
[819]131
[962]132  virtual void PreparePhysicsTable(const G4ParticleDefinition&);
133
134  virtual void BuildPhysicsTable(const G4ParticleDefinition&);
135
[819]136  G4VParticleChange* AtRestDoIt(const G4Track& aTrack, const G4Step& aStep); 
137
138  G4LorentzVector GetEnegryMomentumConservation();
139
140  G4int GetNumberOfNeutronsInTarget();
141
142  // Static functions
143  static void SetManual();
144  static void SetStandard();
145  static void SetParameters(G4double temper=180., G4double ssin2g=.1, G4double etaetap=.3,
146                            G4double fN=0., G4double fD=0., G4double cP=1., G4double mR=1.,
147                            G4int npCHIPSWorld=234, G4double solAn=.5, G4bool efFlag=false,
148                            G4double piTh=141.4,G4double mpi2=20000.,G4double dinum=1880.);
149
150protected:                         
151
152  // zero mean lifetime
153  G4double GetMeanLifeTime(const G4Track& aTrack, G4ForceCondition* );
154  void MuCaptureEMCascade(G4int Z, G4int N, std::vector<G4double>* dV);
155  G4double RandomizeDecayElectron(G4int Z); // Randomize energy of decay electron (in MeV)
156private:
157
158  G4bool RandomizeMuDecayOrCapture(G4int Z, G4int N); // true=MuCapture, false=MuDecay
159  void CalculateEnergyDepositionOfMuCapture(G4int Z); // (2p->1s, MeV) @@ Now N-independent
160  G4bool RandomizeTauDecayOrCapture(G4int Z, G4int N);// true=TauCapture, false=TauDecay
161  void CalculateEnergyDepositionOfTauCapture(G4int Z);// (2p->1s, MeV) @@N-independ,Improve
162
163// BODY
164private:
165  // Static Parameters
166  static G4bool   manualFlag;  // If false then standard parameters are used
167  static G4int    nPartCWorld; // The#of particles for hadronization (limit of A of fragm.)
168  // -> Parameters of the G4Quasmon class:
169  static G4double Temperature; // Quasmon Temperature
170  static G4double SSin2Gluons; // Percent of ssbar sea in a constituen gluon
171  static G4double EtaEtaprime; // Part of eta-prime in all etas
172  // -> Parameters of the G4QNucleus class:
173  static G4double freeNuc;     // probability of the quasi-free baryon on surface
174  static G4double freeDib;     // probability of the quasi-free dibaryon on surface
175  static G4double clustProb;   // clusterization probability in dense region
176  static G4double mediRatio;   // relative vacuum hadronization probability
177  // -> Parameters of the G4QEnvironment class:
178  static G4bool   EnergyFlux;  // Flag for Energy Flux use instead of Multy Quasmon
179  static G4double SolidAngle;  // Part of Solid Angle to capture secondaries(@@A-dep)
180  static G4double PiPrThresh;  // Pion Production Threshold for gammas
181  static G4double M2ShiftVir;  // Shift for M2=-Q2=m_pi^2 of the virtual gamma
182  static G4double DiNuclMass;  // Double Nucleon Mass for virtual normalization
183  //
184  // Working parameters
185  G4LorentzVector EnMomConservation;                  // Residual of Energy/Momentum Cons.
186  G4int nOfNeutrons;                                  // #of neutrons in the target nucleus
187  // Modifires for the reaction
188  G4double Time;                                      // Time shift of the capture reaction
189  G4double EnergyDeposition;                          // Energy deposited in the reaction
190
191};
192#endif
Note: See TracBrowser for help on using the repository browser.