source: trunk/source/processes/hadronic/models/chiral_inv_phase_space/processes/include/G4QInelastic.hh @ 1199

Last change on this file since 1199 was 1199, checked in by garnier, 15 years ago

nvx fichiers dans CVS

File size: 11.7 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer                                           *
4// *                                                                  *
5// * The  Geant4 software  is  copyright of the Copyright Holders  of *
6// * the Geant4 Collaboration.  It is provided  under  the terms  and *
7// * conditions of the Geant4 Software License,  included in the file *
8// * LICENSE and available at  http://cern.ch/geant4/license .  These *
9// * include a list of copyright holders.                             *
10// *                                                                  *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work  make  any representation or  warranty, express or implied, *
14// * regarding  this  software system or assume any liability for its *
15// * use.  Please see the license in the file  LICENSE  and URL above *
16// * for the full disclaimer and the limitation of liability.         *
17// *                                                                  *
18// * This  code  implementation is the result of  the  scientific and *
19// * technical work of the GEANT4 collaboration.                      *
20// * By using,  copying,  modifying or  distributing the software (or *
21// * any work based  on the software)  you  agree  to acknowledge its *
22// * use  in  resulting  scientific  publications,  and indicate your *
23// * acceptance of all terms of the Geant4 Software license.          *
24// ********************************************************************
25//
26// $Id: G4QInelastic.hh,v 1.1 2009/11/17 10:36:54 mkossov Exp $
27// GEANT4 tag $Name: geant4-09-03-cand-01 $
28//
29//      ---------------- G4QInelastic header ----------------
30//                 by Mikhail Kossov, December 2003.
31//  Header of G4QInelastic class (mu-,pi-,K-) of the CHIPS Simulation Branch in GEANT4
32// -------------------------------------------------------------------------------
33// This is a unique CHIPS class for the Hadron-Nuclear Inelastic Interaction Prosesses.
34// -------------------------------------------------------------------------------
35// At present (Dec.04) only pi+/-, K+/- proton, neutron, antiproton and antineutron
36// collisions with protons are implemented, which are fundamental for the in matter
37// simulation of hadronic reactions. The interactions of the same particles with
38// nuclei are implemented only for the low energy (below 1 GeV) nucle0n-nuclear
39// reactions only. The collisions of nuclei with nuclei are planned for the near future.
40// The simulation is based on the G4QuasmonString class, which extends the CHIPS model
41// to the highest energyes, implementing the Quasmon string with the
42// String->Quasmons->Hadrons scenario of the quark-gluon string fragmentation
43// --> CHIPS is a SU(3) event generator, so it does not include reactions with the
44// heavy (c,b,t), which can be simulated only by the SU(6) QUIPS (QUark Invariant
45// Phase Space) model which is an expantion of the CHIPS.- May 2009, M.Kossov.-
46// -------------------------------------------------------------------------------
47// Algorithms: the vacuum interactions in CHIPS are described by the quark exchange (QE)
48// process. The first step is the low energy quark exchange. If as a result of the QE one
49// or both secondary hadrons are below the pi0 threshold (roughly) they are pushed to the
50// Ground State (GS) value(s). The excited (above the pi0 production threshold) hadronic
51// state is considered as a Quasmon, which is filled in the G4QuasmonVector of the
52// G4QuasmonString class. On the second step all G4Quasmons are decayed by the
53// G4Quasmon class and fiill the G4QHadronVector output. If the exchange quark is too far
54// in the rapidity space (a parameter of the G4QuasmonString class) from any of the quarks
55// of the other hadron it creates a string with the nearest in the rapidity space quark.
56// This string is converted into a Quasmon. This forces the coalescence of the residuals
57// to create another Quasmon, while the possibility exists to create more residual
58// Quasmons instead of one - one per each target-quark+projectile-antiquark(diquark) pair.
59// This possibility is tuned by the Drell-Yan pair production process. If the target (or
60// pojectile) is nucleus, then the Quasmons are created not only in vacuum, where they
61// can be fragmented by the G4Quasmon class, but in nuclear matter of the residual target
62// (or projectile). If the Quasmons are crated in nuclear matter, they are fragmented by
63// the G4QEnvironment class with the subsequent Quark Exchange nuclear fragmentation.
64// This is the general scenario.- May 2009, Mikhail Kossov.-
65// --------------------------------------------------------------------------------
66// ****************************************************************************************
67// *********** This HEADER is a property of the CHIPS physics package (M. Kosov) **********
68// ******* DO NOT MAKE ANY CHANGE YOURSELF! Send proposals to Mikhail.Kossov@cern.ch ******
69// ****************************************************************************************
70// Short description: This is a universal class for the incoherent (inelastic)
71// nuclear interactions within the framework of the CHIPS model.
72// ---------------------------------------------------------------------------
73
74#ifndef G4QInelastic_hh
75#define G4QInelastic_hh
76
77// GEANT4 Headers
78#include "globals.hh"
79#include "G4ios.hh"
80#include "Randomize.hh"
81#include "G4VDiscreteProcess.hh"
82#include "G4Track.hh"
83#include "G4Step.hh"
84#include "G4ParticleTypes.hh"
85#include "G4VParticleChange.hh"
86#include "G4ParticleDefinition.hh"
87#include "G4DynamicParticle.hh"
88#include "G4ThreeVector.hh"
89#include "G4LorentzVector.hh"
90#include "G4RandomDirection.hh"
91
92// CHIPS Headers
93#include "G4QEnvironment.hh"
94#include "G4VQCrossSection.hh"
95#include "G4QIsotope.hh"
96#include "G4QProtonNuclearCrossSection.hh"
97#include "G4QPionMinusNuclearCrossSection.hh"
98#include "G4QPionPlusNuclearCrossSection.hh"
99#include "G4QKaonPlusNuclearCrossSection.hh"
100#include "G4QKaonMinusNuclearCrossSection.hh"
101#include "G4QKaonZeroNuclearCrossSection.hh"
102#include "G4QHyperonNuclearCrossSection.hh"
103#include "G4QHyperonPlusNuclearCrossSection.hh"
104#include "G4QAntiBaryonPlusNuclearCrossSection.hh"
105#include "G4QAntiBaryonNuclearCrossSection.hh"
106#include "G4QPhotonNuclearCrossSection.hh"
107#include "G4QElectronNuclearCrossSection.hh"
108#include "G4QMuonNuclearCrossSection.hh"
109#include "G4QTauNuclearCrossSection.hh"
110#include "G4QNuMuNuclearCrossSection.hh"
111#include "G4QANuMuNuclearCrossSection.hh"
112#include "G4QNuENuclearCrossSection.hh"
113#include "G4QANuENuclearCrossSection.hh"
114#include "G4QNuNuNuclearCrossSection.hh"
115#include "G4QANuANuNuclearCrossSection.hh"
116#include "G4QNeutronNuclearCrossSection.hh"
117#include "G4QNeutronCaptureRatio.hh"
118#include "G4QIonIonCollision.hh"
119#include "G4QFragmentation.hh"
120#include "G4QuasiFreeRatios.hh"
121#include "G4QPDGToG4Particle.hh"
122
123class G4QInelastic : public G4VDiscreteProcess
124{
125public:
126
127  // Constructor
128  G4QInelastic(const G4String& processName ="CHIPS_Inelastic");
129
130  // Destructor
131  ~G4QInelastic();
132
133  G4bool IsApplicable(const G4ParticleDefinition& particle);
134
135  G4double GetMeanFreePath(const G4Track& aTrack, G4double previousStepSize,
136                           G4ForceCondition* condition);
137  // It returns the MeanFreePath of the process for the current track :
138  // (energy, material)
139  // The previousStepSize and G4ForceCondition* are not used.
140  // This function overloads a virtual function of the base class.       
141  // It is invoked by the ProcessManager of the Particle.
142 
143
144  G4VParticleChange* PostStepDoIt(const G4Track& aTrack, const G4Step& aStep); 
145  // It computes the final state of the process (at end of step),
146  // returned as a ParticleChange object.       
147  // This function overloads a virtual function of the base class.
148  // It is invoked by the ProcessManager of the Particle.
149
150  // Fake void functions
151  void SetPhysicsTableBining(G4double, G4double, G4int) {;}
152  void BuildPhysicsTable(const G4ParticleDefinition&) {;}
153  void PrintInfoDefinition() {;}
154
155  // Internal Energy-Momentum Residual
156  G4LorentzVector GetEnegryMomentumConservation();
157
158  // Number of neutrons in the target nucleus (primary)
159  G4int GetNumberOfNeutronsInTarget();
160
161  // Static functions ---------------------------------------------------------------------
162  static void SetManual();
163  static void SetStandard();
164  static void SetParameters(G4double temper=180., G4double ssin2g=.1, G4double etaetap=.3,
165                            G4double fN=0., G4double fD=0., G4double cP=1., G4double mR=1.,
166                            G4int npCHIPSWorld=234, G4double solAn=.5, G4bool efFlag=false,
167                            G4double piTh=141.4,G4double mpi2=20000.,G4double dinum=1880.);
168  static void SetPhotNucBias(G4double phnB=1.);
169  static void SetWeakNucBias(G4double ccnB=1.);
170  //--- End of static member functions ----------------------------------------------------
171
172  G4double GetPhotNucBias(){return photNucBias;}
173  G4double GetWeakNucBias(){return weakNucBias;}
174
175private:
176
177  // Hide assignment operator as private
178  G4QInelastic& operator=(const G4QInelastic &right);
179
180  // Copy constructor
181  G4QInelastic(const G4QInelastic&);
182
183  // Random direction in two dimentions pair(first=sin(phi), second=cos(phi))
184  std::pair<G4double,G4double> Random2DDirection();
185
186  // BODY
187  // Static Parameters --------------------------------------------------------------------
188  static G4bool   manualFlag;  // If false then standard parameters are used
189  static G4int    nPartCWorld; // The#of particles for hadronization (limit of A of fragm.)
190  // -> Parameters of the G4Quasmon class:
191  static G4double Temperature; // Quasmon Temperature
192  static G4double SSin2Gluons; // Percent of ssbar sea in a constituen gluon
193  static G4double EtaEtaprime; // Part of eta-prime in all etas
194  // -> Parameters of the G4QNucleus class:
195  static G4double freeNuc;     // probability of the quasi-free baryon on surface
196  static G4double freeDib;     // probability of the quasi-free dibaryon on surface
197  static G4double clustProb;   // clusterization probability in dense region
198  static G4double mediRatio;   // relative vacuum hadronization probability
199  // -> Parameters of the G4QEnvironment class:
200  static G4bool   EnergyFlux;  // Flag for Energy Flux use instead of Multy Quasmon
201  static G4double SolidAngle;  // Part of Solid Angle to capture secondaries(@@A-dep)
202  static G4double PiPrThresh;  // Pion Production Threshold for gammas
203  static G4double M2ShiftVir;  // Shift for M2=-Q2=m_pi^2 of the virtual gamma
204  static G4double DiNuclMass;  // Double Nucleon Mass for virtual normalization
205  // -> Biasing parameters:
206  static G4double photNucBias; // Biasing parameter for photo-($e,mu,tau)Nuclear reactions
207  static G4double weakNucBias; // Biasing parameter for Charged Currents (nu,mu) reactions
208  //--------------------------------- End of static parameters ---------------------------
209  // Working parameters
210  G4VQCrossSection* theCS;
211  G4LorentzVector EnMomConservation;                  // Residual of Energy/Momentum Cons.
212  G4int nOfNeutrons;                                  // #of neutrons in the target nucleus
213
214  // Modifires for the reaction
215  G4double Time;                                      // Time shift of the capture reaction
216  G4double EnergyDeposition;                          // Energy deposited in the reaction
217  static std::vector <G4int> ElementZ;                // Z of the element(i) in theLastCalc
218  static std::vector <G4double> ElProbInMat;          // SumProbabilityElements in Material
219  static std::vector <std::vector<G4int>*> ElIsoN;    // N of isotope(j) of Element(i)
220  static std::vector <std::vector<G4double>*> IsoProbInEl;// SumProbabIsotopes in Element i
221};
222#endif
Note: See TracBrowser for help on using the repository browser.