source: trunk/source/processes/hadronic/models/coherent_elastic/src/G4LEnp.cc@ 1201

Last change on this file since 1201 was 819, checked in by garnier, 17 years ago

import all except CVS

File size: 11.3 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26
27// G4 Low energy model: n-p scattering
28// F.W. Jones, L.G. Greeniaus, H.P. Wellisch
29
30// 11-OCT-2007 F.W. Jones: removed erroneous code for identity
31// exchange of particles.
32
33#include "G4LEnp.hh"
34#include "Randomize.hh"
35#include "G4ios.hh"
36
37// Initialization of static data arrays:
38#include "G4LEnpData.hh"
39#include "Randomize.hh"
40
41
42G4LEnp::G4LEnp():G4HadronicInteraction("G4LEnp")
43{
44 // theParticleChange.SetNumberOfSecondaries(1);
45
46 // SetMinEnergy(10.*MeV);
47 // SetMaxEnergy(1200.*MeV);
48 SetMinEnergy(0.);
49 SetMaxEnergy(1200.*GeV);
50}
51
52G4LEnp::~G4LEnp()
53{
54 theParticleChange.Clear();
55}
56
57G4HadFinalState*
58G4LEnp::ApplyYourself(const G4HadProjectile& aTrack, G4Nucleus& targetNucleus)
59{
60 theParticleChange.Clear();
61 const G4HadProjectile* aParticle = &aTrack;
62
63 G4double P = aParticle->GetTotalMomentum();
64 G4double Px = aParticle->Get4Momentum().x();
65 G4double Py = aParticle->Get4Momentum().y();
66 G4double Pz = aParticle->Get4Momentum().z();
67 G4double ek = aParticle->GetKineticEnergy();
68 G4ThreeVector theInitial = aParticle->Get4Momentum().vect();
69
70 if (verboseLevel > 1) {
71 G4double E = aParticle->GetTotalEnergy();
72 G4double E0 = aParticle->GetDefinition()->GetPDGMass();
73 G4double Q = aParticle->GetDefinition()->GetPDGCharge();
74 G4double N = targetNucleus.GetN();
75 G4double Z = targetNucleus.GetZ();
76 G4cout << "G4LEnp:ApplyYourself: incident particle: "
77 << aParticle->GetDefinition()->GetParticleName() << G4endl;
78 G4cout << "P = " << P/GeV << " GeV/c"
79 << ", Px = " << Px/GeV << " GeV/c"
80 << ", Py = " << Py/GeV << " GeV/c"
81 << ", Pz = " << Pz/GeV << " GeV/c" << G4endl;
82 G4cout << "E = " << E/GeV << " GeV"
83 << ", kinetic energy = " << ek/GeV << " GeV"
84 << ", mass = " << E0/GeV << " GeV"
85 << ", charge = " << Q << G4endl;
86 G4cout << "G4LEnp:ApplyYourself: material:" << G4endl;
87 G4cout << "A = " << N
88 << ", Z = " << Z
89 << ", atomic mass "
90 << G4Proton::Proton()->GetPDGMass()/GeV << "GeV"
91 << G4endl;
92 //
93 // GHEISHA ADD operation to get total energy, mass, charge
94 //
95 E += G4Proton::Proton()->GetPDGMass();
96 G4double E02 = E*E - P*P;
97 E0 = std::sqrt(std::abs(E02));
98 if (E02 < 0)E0 *= -1;
99 Q += Z;
100 G4cout << "G4LEnp:ApplyYourself: total:" << G4endl;
101 G4cout << "E = " << E/GeV << " GeV"
102 << ", mass = " << E0/GeV << " GeV"
103 << ", charge = " << Q << G4endl;
104 }
105
106 // Find energy bin
107
108 G4int je1 = 0;
109 G4int je2 = NENERGY - 1;
110 ek = ek/GeV;
111 do {
112 G4int midBin = (je1 + je2)/2;
113 if (ek < elab[midBin])
114 je2 = midBin;
115 else
116 je1 = midBin;
117 } while (je2 - je1 > 1);
118 // G4int j;
119 //std::abs(ek-elab[je1]) < std::abs(ek-elab[je2]) ? j = je1 : j = je2;
120 G4double delab = elab[je2] - elab[je1];
121
122 // Sample the angle
123
124 G4float sample = G4UniformRand();
125 G4int ke1 = 0;
126 G4int ke2 = NANGLE - 1;
127 G4double dsig = sig[je2][0] - sig[je1][0];
128 G4double rc = dsig/delab;
129 G4double b = sig[je1][0] - rc*elab[je1];
130 G4double sigint1 = rc*ek + b;
131 G4double sigint2 = 0.;
132
133 if (verboseLevel > 1) G4cout << "sample=" << sample << G4endl
134 << ke1 << " " << ke2 << " "
135 << sigint1 << " " << sigint2 << G4endl;
136
137 do {
138 G4int midBin = (ke1 + ke2)/2;
139 dsig = sig[je2][midBin] - sig[je1][midBin];
140 rc = dsig/delab;
141 b = sig[je1][midBin] - rc*elab[je1];
142 G4double sigint = rc*ek + b;
143 if (sample < sigint) {
144 ke2 = midBin;
145 sigint2 = sigint;
146 }
147 else {
148 ke1 = midBin;
149 sigint1 = sigint;
150 }
151 if (verboseLevel > 1)G4cout << ke1 << " " << ke2 << " "
152 << sigint1 << " " << sigint2 << G4endl;
153 } while (ke2 - ke1 > 1);
154
155 // sigint1 and sigint2 should be recoverable from above loop
156
157 // G4double dsig = sig[je2][ke1] - sig[je1][ke1];
158 // G4double rc = dsig/delab;
159 // G4double b = sig[je1][ke1] - rc*elab[je1];
160 // G4double sigint1 = rc*ek + b;
161
162 // G4double dsig = sig[je2][ke2] - sig[je1][ke2];
163 // G4double rc = dsig/delab;
164 // G4double b = sig[je1][ke2] - rc*elab[je1];
165 // G4double sigint2 = rc*ek + b;
166
167 dsig = sigint2 - sigint1;
168 rc = 1./dsig;
169 b = ke1 - rc*sigint1;
170 G4double kint = rc*sample + b;
171 G4double theta = (0.5 + kint)*pi/180.;
172
173 // G4int k;
174 //std::abs(sample-sig[j][ke1]) < std::abs(sample-sig[j][ke2]) ? k = ke1 : k = ke2;
175 // G4double theta = (0.5 + k)*pi/180.;
176
177 if (verboseLevel > 1) {
178 G4cout << " energy bin " << je1 << " energy=" << elab[je1] << G4endl;
179 G4cout << " angle bin " << kint << " angle=" << theta/degree << G4endl;
180 }
181
182
183 // Get the target particle
184
185 G4DynamicParticle* targetParticle = targetNucleus.ReturnTargetParticle();
186
187 G4double E1 = aParticle->GetTotalEnergy();
188 G4double M1 = aParticle->GetDefinition()->GetPDGMass();
189 G4double E2 = targetParticle->GetTotalEnergy();
190 G4double M2 = targetParticle->GetDefinition()->GetPDGMass();
191 G4double totalEnergy = E1 + E2;
192 G4double pseudoMass = std::sqrt(totalEnergy*totalEnergy - P*P);
193 // pseudoMass also = std::sqrt(M1*M1 + M2*M2 + 2*M2*E1)
194
195 // Transform into centre of mass system
196
197 G4double px = (M2/pseudoMass)*Px;
198 G4double py = (M2/pseudoMass)*Py;
199 G4double pz = (M2/pseudoMass)*Pz;
200 G4double p = std::sqrt(px*px + py*py + pz*pz);
201
202 if (verboseLevel > 1) {
203 G4cout << " E1, M1 (GeV) " << E1/GeV << " " << M1/GeV << G4endl;
204 G4cout << " E2, M2 (GeV) " << E2/GeV << " " << M2/GeV << G4endl;
205 G4cout << " particle 1 momentum in CM " << px/GeV << " " << py/GeV << " "
206 << pz/GeV << " " << p/GeV << G4endl;
207 }
208
209 // First scatter w.r.t. Z axis
210 G4double phi = G4UniformRand()*twopi;
211 G4double pxnew = p*std::sin(theta)*std::cos(phi);
212 G4double pynew = p*std::sin(theta)*std::sin(phi);
213 G4double pznew = p*std::cos(theta);
214
215 // Rotate according to the direction of the incident particle
216 if (px*px + py*py > 0) {
217 G4double cost, sint, ph, cosp, sinp;
218 cost = pz/p;
219 sint = (std::sqrt(std::abs((1-cost)*(1+cost))) + std::sqrt(px*px+py*py)/p)/2;
220 py < 0 ? ph = 3*halfpi : ph = halfpi;
221 if (std::abs(px) > 0.000001*GeV) ph = std::atan2(py,px);
222 cosp = std::cos(ph);
223 sinp = std::sin(ph);
224 px = (cost*cosp*pxnew - sinp*pynew + sint*cosp*pznew);
225 py = (cost*sinp*pxnew + cosp*pynew + sint*sinp*pznew);
226 pz = (-sint*pxnew + cost*pznew);
227 // G4ThreeVector it(a,b,c);
228 // p0->SetMomentum(it);
229 // G4ThreeVector aTargetMom = theInitial - it;
230 // targetParticle->SetMomentum(aTargetMom);
231 }
232 else {
233 px = pxnew;
234 py = pynew;
235 pz = pznew;
236 }
237
238 if (verboseLevel > 1) {
239 G4cout << " AFTER SCATTER..." << G4endl;
240 G4cout << " particle 1 momentum in CM " << px/GeV << " " << py/GeV << " "
241 << pz/GeV << " " << p/GeV << G4endl;
242 }
243
244 // Transform to lab system
245
246 G4double E1pM2 = E1 + M2;
247 G4double betaCM = P/E1pM2;
248 G4double betaCMx = Px/E1pM2;
249 G4double betaCMy = Py/E1pM2;
250 G4double betaCMz = Pz/E1pM2;
251 G4double gammaCM = E1pM2/std::sqrt(E1pM2*E1pM2 - P*P);
252
253 if (verboseLevel > 1) {
254 G4cout << " betaCM " << betaCMx << " " << betaCMy << " "
255 << betaCMz << " " << betaCM << G4endl;
256 G4cout << " gammaCM " << gammaCM << G4endl;
257 }
258
259 // Now following GLOREN...
260
261 G4double BETA[5], PA[5], PB[5];
262 BETA[1] = -betaCMx;
263 BETA[2] = -betaCMy;
264 BETA[3] = -betaCMz;
265 BETA[4] = gammaCM;
266
267 //The incident particle...
268
269 PA[1] = px;
270 PA[2] = py;
271 PA[3] = pz;
272 PA[4] = std::sqrt(M1*M1 + p*p);
273
274 G4double BETPA = BETA[1]*PA[1] + BETA[2]*PA[2] + BETA[3]*PA[3];
275 G4double BPGAM = (BETPA * BETA[4]/(BETA[4] + 1.) - PA[4]) * BETA[4];
276
277 PB[1] = PA[1] + BPGAM * BETA[1];
278 PB[2] = PA[2] + BPGAM * BETA[2];
279 PB[3] = PA[3] + BPGAM * BETA[3];
280 PB[4] = (PA[4] - BETPA) * BETA[4];
281
282 G4DynamicParticle* newP = new G4DynamicParticle;
283 newP->SetDefinition(const_cast<G4ParticleDefinition *>(aParticle->GetDefinition()));
284 newP->SetMomentum(G4ThreeVector(PB[1], PB[2], PB[3]));
285
286 //The target particle...
287
288 PA[1] = -px;
289 PA[2] = -py;
290 PA[3] = -pz;
291 PA[4] = std::sqrt(M2*M2 + p*p);
292
293 BETPA = BETA[1]*PA[1] + BETA[2]*PA[2] + BETA[3]*PA[3];
294 BPGAM = (BETPA * BETA[4]/(BETA[4] + 1.) - PA[4]) * BETA[4];
295
296 PB[1] = PA[1] + BPGAM * BETA[1];
297 PB[2] = PA[2] + BPGAM * BETA[2];
298 PB[3] = PA[3] + BPGAM * BETA[3];
299 PB[4] = (PA[4] - BETPA) * BETA[4];
300
301 targetParticle->SetMomentum(G4ThreeVector(PB[1], PB[2], PB[3]));
302
303 if (verboseLevel > 1) {
304 G4cout << " particle 1 momentum in LAB "
305 << newP->GetMomentum()*(1./GeV)
306 << " " << newP->GetTotalMomentum()/GeV << G4endl;
307 G4cout << " particle 2 momentum in LAB "
308 << targetParticle->GetMomentum()*(1./GeV)
309 << " " << targetParticle->GetTotalMomentum()/GeV << G4endl;
310 G4cout << " TOTAL momentum in LAB "
311 << (newP->GetMomentum()+targetParticle->GetMomentum())*(1./GeV)
312 << " "
313 << (newP->GetMomentum()+targetParticle->GetMomentum()).mag()/GeV
314 << G4endl;
315 }
316
317 theParticleChange.SetMomentumChange(newP->GetMomentumDirection());
318 theParticleChange.SetEnergyChange(newP->GetKineticEnergy());
319 delete newP;
320 G4DynamicParticle* p1 = new G4DynamicParticle;
321 p1->SetDefinition(targetParticle->GetDefinition());
322 p1->SetMomentum(targetParticle->GetMomentum());
323 theParticleChange.AddSecondary(p1);
324
325 return &theParticleChange;
326}
327
328 // end of file
Note: See TracBrowser for help on using the repository browser.