source: trunk/source/processes/hadronic/models/coherent_elastic/src/G4UHadronElasticProcess.cc@ 900

Last change on this file since 900 was 819, checked in by garnier, 17 years ago

import all except CVS

File size: 12.7 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id: G4UHadronElasticProcess.cc,v 1.35.2.1 2008/04/23 14:14:55 gcosmo Exp $
27// GEANT4 tag $Name: geant4-09-01-patch-02 $
28//
29// Geant4 Hadron Elastic Scattering Process -- header file
30//
31// Created 21 April 2006 V.Ivanchenko
32//
33// Modified:
34// 24.04.06 V.Ivanchenko add neutron scattering on hydrogen from CHIPS
35// 07.06.06 V.Ivanchenko fix problem of rotation of final state
36// 25.07.06 V.Ivanchenko add 19 MeV low energy for CHIPS
37// 26.09.06 V.Ivanchenko add lowestEnergy
38// 20.10.06 V.Ivanchenko initialise lowestEnergy=0 for neitrals, eV for charged
39// 23.01.07 V.Ivanchnko add cross section interfaces with Z and A
40// 02.05.07 V.Ivanchnko add He3
41//
42
43#include "G4UHadronElasticProcess.hh"
44#include "globals.hh"
45#include "G4CrossSectionDataStore.hh"
46#include "G4HadronElasticDataSet.hh"
47#include "G4VQCrossSection.hh"
48#include "G4QElasticCrossSection.hh"
49#include "G4QCHIPSWorld.hh"
50#include "G4Element.hh"
51#include "G4ElementVector.hh"
52#include "G4IsotopeVector.hh"
53#include "G4Neutron.hh"
54#include "G4Proton.hh"
55#include "G4HadronElastic.hh"
56
57G4UHadronElasticProcess::G4UHadronElasticProcess(const G4String& pName, G4double)
58 : G4HadronicProcess(pName), lowestEnergy(0.0), first(true)
59{
60 AddDataSet(new G4HadronElasticDataSet);
61 theProton = G4Proton::Proton();
62 theNeutron = G4Neutron::Neutron();
63 thEnergy = 19.0*MeV;
64 verboseLevel= 1;
65 qCManager = 0;
66}
67
68G4UHadronElasticProcess::~G4UHadronElasticProcess()
69{
70}
71
72void G4UHadronElasticProcess::SetQElasticCrossSection(G4VQCrossSection* p)
73{
74 qCManager = p;
75}
76
77void G4UHadronElasticProcess::
78BuildPhysicsTable(const G4ParticleDefinition& aParticleType)
79{
80 if(first) {
81 first = false;
82 if(!qCManager) qCManager = G4QElasticCrossSection::GetPointer();
83 theParticle = &aParticleType;
84 pPDG = theParticle->GetPDGEncoding();
85
86 store = G4HadronicProcess::GetCrossSectionDataStore();
87
88 // defined lowest threshold for the projectile
89 if(theParticle->GetPDGCharge() != 0.0) lowestEnergy = eV;
90
91 if(verboseLevel>1 ||
92 (verboseLevel==1 && theParticle == theNeutron)) {
93 G4cout << G4endl;
94 G4cout << "G4UHadronElasticProcess for "
95 << theParticle->GetParticleName()
96 << " PDGcode= " << pPDG
97 << " Elow(MeV)= " << thEnergy/MeV
98 << " Elowest(eV)= " << lowestEnergy/eV
99 << G4endl;
100 }
101 }
102 store->BuildPhysicsTable(aParticleType);
103}
104
105G4double G4UHadronElasticProcess::GetMeanFreePath(const G4Track& track,
106 G4double,
107 G4ForceCondition* cond)
108{
109 *cond = NotForced;
110 const G4DynamicParticle* dp = track.GetDynamicParticle();
111 cross = 0.0;
112 G4double x = DBL_MAX;
113
114 // Compute cross sesctions
115 const G4Material* material = track.GetMaterial();
116 const G4ElementVector* theElementVector = material->GetElementVector();
117 const G4double* theAtomNumDensityVector = material->GetVecNbOfAtomsPerVolume();
118 G4double temp = material->GetTemperature();
119 G4int nelm = material->GetNumberOfElements();
120
121#ifdef G4VERBOSE
122 if(verboseLevel>1)
123 G4cout << "G4UHadronElasticProcess get mfp for "
124 << theParticle->GetParticleName()
125 << " p(GeV)= " << dp->GetTotalMomentum()/GeV
126 << " in " << material->GetName()
127 << G4endl;
128#endif
129
130 for (G4int i=0; i<nelm; i++) {
131 const G4Element* elm = (*theElementVector)[i];
132 G4double x = GetMicroscopicCrossSection(dp, elm, temp);
133 cross += theAtomNumDensityVector[i]*x;
134 xsec[i] = cross;
135 }
136
137#ifdef G4VERBOSE
138 if(verboseLevel>1)
139 G4cout << "G4UHadronElasticProcess cross(1/mm)= " << cross
140 << " E(MeV)= " << dp->GetKineticEnergy()
141 << " " << theParticle->GetParticleName()
142 << " in " << material->GetName()
143 << G4endl;
144#endif
145
146 if(cross > DBL_MIN) x = 1./cross;
147 return x;
148}
149
150G4double G4UHadronElasticProcess::GetMicroscopicCrossSection(
151 const G4DynamicParticle* dp,
152 const G4Element* elm,
153 G4double temp)
154{
155 // gives the microscopic cross section in GEANT4 internal units
156 G4int iz = G4int(elm->GetZ());
157 G4double x = 0.0;
158
159 // CHIPS cross sections
160 if(iz <= 2 && dp->GetKineticEnergy() > thEnergy &&
161 (theParticle == theProton || theParticle == theNeutron)) {
162
163 G4double momentum = dp->GetTotalMomentum();
164 G4IsotopeVector* isv = elm->GetIsotopeVector();
165 G4int ni = 0;
166 if(isv) ni = isv->size();
167
168 x = 0.0;
169 if(ni == 0) {
170 G4int N = G4int(elm->GetN()+0.5) - iz;
171 x = qCManager->GetCrossSection(false,momentum,iz,N,pPDG);
172 xsecH[0] = x;
173#ifdef G4VERBOSE
174 if(verboseLevel>1)
175 G4cout << "G4UHadronElasticProcess compute CHIPS CS for Z= " << iz
176 << " N= " << N << " pdg= " << pPDG
177 << " mom(GeV)= " << momentum/GeV
178 << " " << qCManager << G4endl;
179#endif
180 } else {
181 G4double* ab = elm->GetRelativeAbundanceVector();
182 for(G4int j=0; j<ni; j++) {
183 G4int N = (*isv)[j]->GetN() - iz;
184 if(iz == 1) {
185 if(N > 1) N = 1;
186 } else {
187 N = 2;
188 }
189#ifdef G4VERBOSE
190 if(verboseLevel>1)
191 G4cout << "G4UHadronElasticProcess compute CHIPS CS for Z= " << iz
192 << " N= " << N << " pdg= " << pPDG
193 << " mom(GeV)= " << momentum/GeV
194 << " " << qCManager << G4endl;
195#endif
196 G4double y = ab[j]*qCManager->GetCrossSection(false,momentum,iz,N,pPDG);
197 x += y;
198 xsecH[j] = x;
199 }
200 }
201
202 // GHAD cross section
203 } else {
204#ifdef G4VERBOSE
205 if(verboseLevel>1)
206 G4cout << "G4UHadronElasticProcess compute GHAD CS for element "
207 << elm->GetName()
208 << G4endl;
209#endif
210 x = store->GetCrossSection(dp, elm, temp);
211 }
212 // NaN finder
213 if(!(x < 0.0 || x >= 0.0)) {
214 if (verboseLevel > 1) {
215 G4cout << "G4UHadronElasticProcess:WARNING: Z= " << iz
216 << " pdg= " << pPDG
217 << " mom(GeV)= " << dp->GetTotalMomentum()/GeV
218 << " cross= " << x
219 << " set to zero"
220 << G4endl;
221 }
222 x = 0.0;
223 }
224
225#ifdef G4VERBOSE
226 if(verboseLevel>1)
227 G4cout << "G4UHadronElasticProcess cross(mb)= " << x/millibarn
228 << " E(MeV)= " << dp->GetKineticEnergy()
229 << " " << theParticle->GetParticleName()
230 << " in Z= " << iz
231 << G4endl;
232#endif
233
234 return x;
235}
236
237G4VParticleChange* G4UHadronElasticProcess::PostStepDoIt(
238 const G4Track& track,
239 const G4Step& step)
240{
241 G4ForceCondition cn;
242 aParticleChange.Initialize(track);
243 G4double kineticEnergy = track.GetKineticEnergy();
244 if(kineticEnergy <= lowestEnergy)
245 return G4VDiscreteProcess::PostStepDoIt(track,step);
246
247 G4double mfp = GetMeanFreePath(track, 0.0, &cn);
248 if(mfp == DBL_MAX)
249 return G4VDiscreteProcess::PostStepDoIt(track,step);
250
251 G4Material* material = track.GetMaterial();
252
253 // Select element
254 const G4ElementVector* theElementVector = material->GetElementVector();
255 G4Element* elm = (*theElementVector)[0];
256 G4int nelm = material->GetNumberOfElements() - 1;
257 if (nelm > 0) {
258 G4double x = G4UniformRand()*cross;
259 G4int i = -1;
260 do {i++;} while (x > xsec[i] && i < nelm);
261 elm = (*theElementVector)[i];
262 }
263 G4double Z = elm->GetZ();
264 G4double A = G4double(G4int(elm->GetN()+0.5));
265 G4int iz = G4int(Z);
266
267 // Select isotope
268 G4IsotopeVector* isv = elm->GetIsotopeVector();
269 G4int ni = 0;
270 if(isv) ni = isv->size();
271
272 if(ni == 1) {
273 A = G4double((*isv)[0]->GetN());
274 } else if(ni > 1) {
275
276 G4double* ab = elm->GetRelativeAbundanceVector();
277 G4int j = -1;
278 ni--;
279 // Special treatment of hydrogen and helium for CHIPS
280 if(iz <= 2 && kineticEnergy > thEnergy &&
281 (theParticle == theProton || theParticle == theNeutron)) {
282 G4double x = G4UniformRand()*xsecH[ni];
283 do {j++;} while (x > xsecH[j] && j < ni);
284
285 // GHAD cross sections
286 } else {
287 G4double y = G4UniformRand();
288 do {
289 j++;
290 y -= ab[j];
291 } while (y > 0.0 && j < ni);
292 }
293 A = G4double((*isv)[j]->GetN());
294 }
295
296 G4HadronicInteraction* hadi =
297 ChooseHadronicInteraction( kineticEnergy, material, elm);
298
299 // Initialize the hadronic projectile from the track
300 // G4cout << "track " << track.GetDynamicParticle()->Get4Momentum()<<G4endl;
301 G4HadProjectile thePro(track);
302 if(verboseLevel>1)
303 G4cout << "G4UHadronElasticProcess::PostStepDoIt for "
304 << theParticle->GetParticleName()
305 << " Target Z= " << Z
306 << " A= " << A << G4endl;
307 targetNucleus.SetParameters(A, Z);
308
309 aParticleChange.Initialize(track);
310 G4HadFinalState* result = hadi->ApplyYourself(thePro, targetNucleus);
311 G4ThreeVector indir = track.GetMomentumDirection();
312 G4ThreeVector outdir = (result->GetMomentumChange()).rotateUz(indir);
313
314 if(verboseLevel>1)
315 G4cout << "Efin= " << result->GetEnergyChange()
316 << " de= " << result->GetLocalEnergyDeposit()
317 << " nsec= " << result->GetNumberOfSecondaries()
318 << " dir= " << outdir
319 << G4endl;
320
321 aParticleChange.ProposeEnergy(result->GetEnergyChange());
322 aParticleChange.ProposeMomentumDirection(outdir);
323 if(result->GetNumberOfSecondaries() > 0) {
324 aParticleChange.SetNumberOfSecondaries(1);
325 G4DynamicParticle* p = result->GetSecondary(0)->GetParticle();
326 G4ThreeVector pdir = p->GetMomentumDirection();
327 // G4cout << "recoil " << pdir << G4endl;
328 pdir = pdir.rotateUz(indir);
329 // G4cout << "recoil rotated " << pdir << G4endl;
330 p->SetMomentumDirection(pdir);
331 aParticleChange.AddSecondary(p);
332 } else {
333 aParticleChange.SetNumberOfSecondaries(0);
334 aParticleChange.ProposeLocalEnergyDeposit(result->GetLocalEnergyDeposit());
335 }
336 result->Clear();
337
338 return G4VDiscreteProcess::PostStepDoIt(track,step);
339}
340
341G4bool G4UHadronElasticProcess::
342IsApplicable(const G4ParticleDefinition& aParticleType)
343{
344 return (aParticleType == *(G4PionPlus::PionPlus()) ||
345 aParticleType == *(G4PionMinus::PionMinus()) ||
346 aParticleType == *(G4KaonPlus::KaonPlus()) ||
347 aParticleType == *(G4KaonZeroShort::KaonZeroShort()) ||
348 aParticleType == *(G4KaonZeroLong::KaonZeroLong()) ||
349 aParticleType == *(G4KaonMinus::KaonMinus()) ||
350 aParticleType == *(G4Proton::Proton()) ||
351 aParticleType == *(G4AntiProton::AntiProton()) ||
352 aParticleType == *(G4Neutron::Neutron()) ||
353 aParticleType == *(G4AntiNeutron::AntiNeutron()) ||
354 aParticleType == *(G4Lambda::Lambda()) ||
355 aParticleType == *(G4AntiLambda::AntiLambda()) ||
356 aParticleType == *(G4SigmaPlus::SigmaPlus()) ||
357 aParticleType == *(G4SigmaZero::SigmaZero()) ||
358 aParticleType == *(G4SigmaMinus::SigmaMinus()) ||
359 aParticleType == *(G4AntiSigmaPlus::AntiSigmaPlus()) ||
360 aParticleType == *(G4AntiSigmaZero::AntiSigmaZero()) ||
361 aParticleType == *(G4AntiSigmaMinus::AntiSigmaMinus()) ||
362 aParticleType == *(G4XiZero::XiZero()) ||
363 aParticleType == *(G4XiMinus::XiMinus()) ||
364 aParticleType == *(G4AntiXiZero::AntiXiZero()) ||
365 aParticleType == *(G4AntiXiMinus::AntiXiMinus()) ||
366 aParticleType == *(G4Deuteron::Deuteron()) ||
367 aParticleType == *(G4Triton::Triton()) ||
368 aParticleType == *(G4He3::He3()) ||
369 aParticleType == *(G4Alpha::Alpha()) ||
370 aParticleType == *(G4OmegaMinus::OmegaMinus()) ||
371 aParticleType == *(G4AntiOmegaMinus::AntiOmegaMinus()));
372}
373
374void G4UHadronElasticProcess::
375DumpPhysicsTable(const G4ParticleDefinition& aParticleType)
376{
377 store->DumpPhysicsTable(aParticleType);
378}
379
Note: See TracBrowser for help on using the repository browser.