source: trunk/source/processes/hadronic/models/de_excitation/evaporation/src/G4Evaporation.cc @ 1007

Last change on this file since 1007 was 1007, checked in by garnier, 15 years ago

update to geant4.9.2

File size: 11.5 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer                                           *
4// *                                                                  *
5// * The  Geant4 software  is  copyright of the Copyright Holders  of *
6// * the Geant4 Collaboration.  It is provided  under  the terms  and *
7// * conditions of the Geant4 Software License,  included in the file *
8// * LICENSE and available at  http://cern.ch/geant4/license .  These *
9// * include a list of copyright holders.                             *
10// *                                                                  *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work  make  any representation or  warranty, express or implied, *
14// * regarding  this  software system or assume any liability for its *
15// * use.  Please see the license in the file  LICENSE  and URL above *
16// * for the full disclaimer and the limitation of liability.         *
17// *                                                                  *
18// * This  code  implementation is the result of  the  scientific and *
19// * technical work of the GEANT4 collaboration.                      *
20// * By using,  copying,  modifying or  distributing the software (or *
21// * any work based  on the software)  you  agree  to acknowledge its *
22// * use  in  resulting  scientific  publications,  and indicate your *
23// * acceptance of all terms of the Geant4 Software license.          *
24// ********************************************************************
25//
26//
27// $Id: G4Evaporation.cc,v 1.12 2008/12/09 17:57:36 ahoward Exp $
28// GEANT4 tag $Name: geant4-09-02 $
29//
30// Hadronic Process: Nuclear De-excitations
31// by V. Lara (Oct 1998)
32//
33// Alex Howard - added protection for negative probabilities in the sum, 14/2/07
34//
35// Modif (03 September 2008) by J. M. Quesada for external choice of inverse
36// cross section option
37// JMQ (06 September 2008) Also external choices have been added for
38// superimposed Coulomb barrier (if useSICBis set true, by default is false)
39
40#include "G4Evaporation.hh"
41#include "G4EvaporationFactory.hh"
42#include "G4EvaporationGEMFactory.hh"
43#include "G4HadronicException.hh"
44#include <numeric>
45
46G4Evaporation::G4Evaporation() 
47{
48  theChannelFactory = new G4EvaporationFactory();
49  theChannels = theChannelFactory->GetChannel();
50}
51
52G4Evaporation::G4Evaporation(const G4Evaporation &) : G4VEvaporation()
53{
54    throw G4HadronicException(__FILE__, __LINE__, "G4Evaporation::copy_constructor meant to not be accessable.");
55}
56
57
58G4Evaporation::~G4Evaporation()
59{
60  if (theChannels != 0) theChannels = 0;
61  if (theChannelFactory != 0) delete theChannelFactory;
62}
63
64const G4Evaporation & G4Evaporation::operator=(const G4Evaporation &)
65{
66    throw G4HadronicException(__FILE__, __LINE__, "G4Evaporation::operator= meant to not be accessable.");
67    return *this;
68}
69
70
71G4bool G4Evaporation::operator==(const G4Evaporation &) const
72{
73    return false;
74}
75
76G4bool G4Evaporation::operator!=(const G4Evaporation &) const
77{
78    return true;
79}
80
81
82void G4Evaporation::SetDefaultChannel()
83{
84  if (theChannelFactory != 0) delete theChannelFactory;
85  theChannelFactory = new G4EvaporationFactory();
86  theChannels = theChannelFactory->GetChannel();
87}
88
89void G4Evaporation::SetGEMChannel()
90{
91  if (theChannelFactory != 0) delete theChannelFactory;
92  theChannelFactory = new G4EvaporationGEMFactory();
93  theChannels = theChannelFactory->GetChannel();
94}
95
96G4FragmentVector * G4Evaporation::BreakItUp(const G4Fragment &theNucleus)
97{
98    G4FragmentVector * theResult = new G4FragmentVector;
99
100    // CHECK that Excitation Energy != 0
101    if (theNucleus.GetExcitationEnergy() <= 0.0) {
102        theResult->push_back(new G4Fragment(theNucleus));
103        return theResult;
104    }
105
106    // The residual nucleus (after evaporation of each fragment)
107    G4Fragment theResidualNucleus = theNucleus;
108
109    // Number of channels
110    G4int TotNumberOfChannels = theChannels->size(); 
111
112    // Starts loop over evaporated particles
113    for (;;) 
114 
115   {   
116        // loop over evaporation channels
117        std::vector<G4VEvaporationChannel*>::iterator i;
118        for (i=theChannels->begin(); i != theChannels->end(); i++) 
119          {
120  // for inverse cross section choice
121            (*i)->SetOPTxs(OPTxs);
122  // for superimposed Coulomb Barrier for inverse cross sections
123            (*i)->UseSICB(useSICB);
124
125            (*i)->Initialize(theResidualNucleus);
126          }
127        // Can't use this form beacuse Initialize is a non const member function
128        //      for_each(theChannels->begin(),theChannels->end(),
129        //               bind2nd(mem_fun(&G4VEvaporationChannel::Initialize),theResidualNucleus));
130        // Work out total decay probability by summing over channels
131        G4double TotalProbability =  std::accumulate(theChannels->begin(),
132                                                       theChannels->end(),
133                                                       0.0,SumProbabilities());
134       
135        if (TotalProbability <= 0.0) 
136          {
137            // Will be no evaporation more
138            // write information about residual nucleus
139            theResult->push_back(new G4Fragment(theResidualNucleus));
140            break; 
141          } 
142        else 
143          {
144            // Selection of evaporation channel, fission or gamma
145            // G4double * EmissionProbChannel = new G4double(TotNumberOfChannels);
146            std::vector<G4double> EmissionProbChannel;
147            EmissionProbChannel.reserve(theChannels->size());
148           
149
150            // EmissionProbChannel[0] = theChannels->at(0)->GetEmissionProbability();
151
152
153            G4double first = theChannels->front()->GetEmissionProbability();
154
155            EmissionProbChannel.push_back(first >0 ? first : 0); // index 0
156
157
158            //      EmissionProbChannel.push_back(theChannels->front()->GetEmissionProbability()); // index 0
159           
160            for (i= (theChannels->begin()+1); i != theChannels->end(); i++) 
161              {
162                // EmissionProbChannel[i] = EmissionProbChannel[i-1] +
163                // theChannels->at(i)->GetEmissionProbability();
164                //              EmissionProbChannel.push_back(EmissionProbChannel.back() + (*i)->GetEmissionProbability());
165                first = (*i)->GetEmissionProbability();
166                EmissionProbChannel.push_back(first> 0? EmissionProbChannel.back() + first : EmissionProbChannel.back());
167              }
168
169            G4double shoot = G4UniformRand() * TotalProbability;
170            G4int j;
171            for (j=0; j < TotNumberOfChannels; j++) 
172              {
173                // if (shoot < EmissionProbChannel[i])
174                if (shoot < EmissionProbChannel[j]) 
175                  break;
176              }
177           
178            // delete [] EmissionProbChannel;
179            EmissionProbChannel.clear();
180                       
181            if( j >= TotNumberOfChannels ) 
182              {
183                G4cerr << " Residual A: " << theResidualNucleus.GetA() << " Residual Z: " << theResidualNucleus.GetZ() << " Excitation Energy: " << theResidualNucleus.GetExcitationEnergy() << G4endl;
184                G4cerr << " j has not chosen a channel, j = " << j << " TotNumberOfChannels " << TotNumberOfChannels << " Total Probability: " << TotalProbability << G4endl;
185                for (j=0; j < TotNumberOfChannels; j++) 
186                  {
187                    G4cerr << " j: " << j << " EmissionProbChannel: " << EmissionProbChannel[j] << " and shoot: " << shoot << " (<ProbChannel?) " << G4endl;
188                  }             
189                throw G4HadronicException(__FILE__, __LINE__,  "G4Evaporation::BreakItUp: Can't define emission probability of the channels!" );
190              } 
191            else 
192              {
193                // Perform break-up
194                G4FragmentVector * theEvaporationResult = (*theChannels)[j]->BreakUp(theResidualNucleus);
195
196#ifdef debug
197                G4cout <<           "-----------------------------------------------------------\n"; 
198                G4cout << G4endl << " After the evaporation of a particle, testing conservation \n";
199                CheckConservation(theResidualNucleus,theEvaporationResult);
200                G4cout << G4endl
201                       <<           "------------------------------------------------------------\n"; 
202#endif 
203
204                // Check if chosen channel is fission (there are only two EXCITED fragments)
205                // or the channel could not evaporate anything
206                if ( theEvaporationResult->size() == 1 || 
207                     ((*(theEvaporationResult->begin()))->GetExcitationEnergy() > 0.0 && 
208                      (*(theEvaporationResult->end()-1))->GetExcitationEnergy() > 0.0) ) {
209                  // FISSION
210                  for (G4FragmentVector::iterator i = theEvaporationResult->begin();
211                       i != theEvaporationResult->end(); ++i) 
212                    {
213                      theResult->push_back(*(i));
214                    }
215                  delete theEvaporationResult;
216                  break;
217                } else {
218                  // EVAPORATION
219                  for (G4FragmentVector::iterator i = theEvaporationResult->begin();
220                       i != theEvaporationResult->end()-1; ++i) 
221                    {
222#ifdef PRECOMPOUND_TEST
223                      if ((*i)->GetA() == 0) (*i)->SetCreatorModel(G4String("G4PhotonEvaporation"));
224#endif
225                      theResult->push_back(*(i));
226                    }
227                  theResidualNucleus = *(theEvaporationResult->back());
228                  delete theEvaporationResult->back();
229                  delete theEvaporationResult;
230#ifdef PRECOMPOUND_TEST
231                  theResidualNucleus.SetCreatorModel(G4String("ResidualNucleus"));
232#endif
233
234                }
235              }
236          }
237      }
238   
239#ifdef debug
240    G4cout << "======== Evaporation Conservation Test ===========\n"
241           << "==================================================\n";
242    CheckConservation(theNucleus,theResult);
243    G4cout << "==================================================\n";
244#endif
245    return theResult;
246}
247
248
249
250#ifdef debug
251void G4Evaporation::CheckConservation(const G4Fragment & theInitialState,
252                                      G4FragmentVector * Result) const
253{
254    G4double ProductsEnergy =0;
255    G4ThreeVector ProductsMomentum;
256    G4int ProductsA = 0;
257    G4int ProductsZ = 0;
258    for (G4FragmentVector::iterator h = Result->begin(); h != Result->end(); h++) {
259        G4LorentzVector tmp = (*h)->GetMomentum();
260        ProductsEnergy += tmp.e();
261        ProductsMomentum += tmp.vect();
262        ProductsA += static_cast<G4int>((*h)->GetA());
263        ProductsZ += static_cast<G4int>((*h)->GetZ());
264    }
265
266    if (ProductsA != theInitialState.GetA()) {
267        G4cout << "!!!!!!!!!! Baryonic Number Conservation Violation !!!!!!!!!!" << G4endl;
268        G4cout << "G4Evaporation.cc: Barionic Number Conservation test for evaporation fragments" 
269               << G4endl; 
270        G4cout << "Initial A = " << theInitialState.GetA() 
271               << "   Fragments A = " << ProductsA << "   Diference --> " 
272               << theInitialState.GetA() - ProductsA << G4endl;
273    }
274    if (ProductsZ != theInitialState.GetZ()) {
275        G4cout << "!!!!!!!!!! Charge Conservation Violation !!!!!!!!!!" << G4endl;
276        G4cout << "G4Evaporation.cc: Charge Conservation test for evaporation fragments" 
277               << G4endl; 
278        G4cout << "Initial Z = " << theInitialState.GetZ() 
279               << "   Fragments Z = " << ProductsZ << "   Diference --> " 
280               << theInitialState.GetZ() - ProductsZ << G4endl;
281    }
282    if (std::abs(ProductsEnergy-theInitialState.GetMomentum().e()) > 1.0*keV) {
283        G4cout << "!!!!!!!!!! Energy Conservation Violation !!!!!!!!!!" << G4endl;
284        G4cout << "G4Evaporation.cc: Energy Conservation test for evaporation fragments" 
285               << G4endl; 
286        G4cout << "Initial E = " << theInitialState.GetMomentum().e()/MeV << " MeV"
287               << "   Fragments E = " << ProductsEnergy/MeV  << " MeV   Diference --> " 
288               << (theInitialState.GetMomentum().e() - ProductsEnergy)/MeV << " MeV" << G4endl;
289    } 
290    if (std::abs(ProductsMomentum.x()-theInitialState.GetMomentum().x()) > 1.0*keV || 
291        std::abs(ProductsMomentum.y()-theInitialState.GetMomentum().y()) > 1.0*keV ||
292        std::abs(ProductsMomentum.z()-theInitialState.GetMomentum().z()) > 1.0*keV) {
293        G4cout << "!!!!!!!!!! Momentum Conservation Violation !!!!!!!!!!" << G4endl;
294        G4cout << "G4Evaporation.cc: Momentum Conservation test for evaporation fragments" 
295               << G4endl; 
296        G4cout << "Initial P = " << theInitialState.GetMomentum().vect() << " MeV"
297               << "   Fragments P = " << ProductsMomentum  << " MeV   Diference --> " 
298               << theInitialState.GetMomentum().vect() - ProductsMomentum << " MeV" << G4endl;
299    }
300    return;
301}
302#endif
303
304
305
306
Note: See TracBrowser for help on using the repository browser.