// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: G4Evaporation.cc,v 1.12 2008/12/09 17:57:36 ahoward Exp $ // GEANT4 tag $Name: geant4-09-02 $ // // Hadronic Process: Nuclear De-excitations // by V. Lara (Oct 1998) // // Alex Howard - added protection for negative probabilities in the sum, 14/2/07 // // Modif (03 September 2008) by J. M. Quesada for external choice of inverse // cross section option // JMQ (06 September 2008) Also external choices have been added for // superimposed Coulomb barrier (if useSICBis set true, by default is false) #include "G4Evaporation.hh" #include "G4EvaporationFactory.hh" #include "G4EvaporationGEMFactory.hh" #include "G4HadronicException.hh" #include G4Evaporation::G4Evaporation() { theChannelFactory = new G4EvaporationFactory(); theChannels = theChannelFactory->GetChannel(); } G4Evaporation::G4Evaporation(const G4Evaporation &) : G4VEvaporation() { throw G4HadronicException(__FILE__, __LINE__, "G4Evaporation::copy_constructor meant to not be accessable."); } G4Evaporation::~G4Evaporation() { if (theChannels != 0) theChannels = 0; if (theChannelFactory != 0) delete theChannelFactory; } const G4Evaporation & G4Evaporation::operator=(const G4Evaporation &) { throw G4HadronicException(__FILE__, __LINE__, "G4Evaporation::operator= meant to not be accessable."); return *this; } G4bool G4Evaporation::operator==(const G4Evaporation &) const { return false; } G4bool G4Evaporation::operator!=(const G4Evaporation &) const { return true; } void G4Evaporation::SetDefaultChannel() { if (theChannelFactory != 0) delete theChannelFactory; theChannelFactory = new G4EvaporationFactory(); theChannels = theChannelFactory->GetChannel(); } void G4Evaporation::SetGEMChannel() { if (theChannelFactory != 0) delete theChannelFactory; theChannelFactory = new G4EvaporationGEMFactory(); theChannels = theChannelFactory->GetChannel(); } G4FragmentVector * G4Evaporation::BreakItUp(const G4Fragment &theNucleus) { G4FragmentVector * theResult = new G4FragmentVector; // CHECK that Excitation Energy != 0 if (theNucleus.GetExcitationEnergy() <= 0.0) { theResult->push_back(new G4Fragment(theNucleus)); return theResult; } // The residual nucleus (after evaporation of each fragment) G4Fragment theResidualNucleus = theNucleus; // Number of channels G4int TotNumberOfChannels = theChannels->size(); // Starts loop over evaporated particles for (;;) { // loop over evaporation channels std::vector::iterator i; for (i=theChannels->begin(); i != theChannels->end(); i++) { // for inverse cross section choice (*i)->SetOPTxs(OPTxs); // for superimposed Coulomb Barrier for inverse cross sections (*i)->UseSICB(useSICB); (*i)->Initialize(theResidualNucleus); } // Can't use this form beacuse Initialize is a non const member function // for_each(theChannels->begin(),theChannels->end(), // bind2nd(mem_fun(&G4VEvaporationChannel::Initialize),theResidualNucleus)); // Work out total decay probability by summing over channels G4double TotalProbability = std::accumulate(theChannels->begin(), theChannels->end(), 0.0,SumProbabilities()); if (TotalProbability <= 0.0) { // Will be no evaporation more // write information about residual nucleus theResult->push_back(new G4Fragment(theResidualNucleus)); break; } else { // Selection of evaporation channel, fission or gamma // G4double * EmissionProbChannel = new G4double(TotNumberOfChannels); std::vector EmissionProbChannel; EmissionProbChannel.reserve(theChannels->size()); // EmissionProbChannel[0] = theChannels->at(0)->GetEmissionProbability(); G4double first = theChannels->front()->GetEmissionProbability(); EmissionProbChannel.push_back(first >0 ? first : 0); // index 0 // EmissionProbChannel.push_back(theChannels->front()->GetEmissionProbability()); // index 0 for (i= (theChannels->begin()+1); i != theChannels->end(); i++) { // EmissionProbChannel[i] = EmissionProbChannel[i-1] + // theChannels->at(i)->GetEmissionProbability(); // EmissionProbChannel.push_back(EmissionProbChannel.back() + (*i)->GetEmissionProbability()); first = (*i)->GetEmissionProbability(); EmissionProbChannel.push_back(first> 0? EmissionProbChannel.back() + first : EmissionProbChannel.back()); } G4double shoot = G4UniformRand() * TotalProbability; G4int j; for (j=0; j < TotNumberOfChannels; j++) { // if (shoot < EmissionProbChannel[i]) if (shoot < EmissionProbChannel[j]) break; } // delete [] EmissionProbChannel; EmissionProbChannel.clear(); if( j >= TotNumberOfChannels ) { G4cerr << " Residual A: " << theResidualNucleus.GetA() << " Residual Z: " << theResidualNucleus.GetZ() << " Excitation Energy: " << theResidualNucleus.GetExcitationEnergy() << G4endl; G4cerr << " j has not chosen a channel, j = " << j << " TotNumberOfChannels " << TotNumberOfChannels << " Total Probability: " << TotalProbability << G4endl; for (j=0; j < TotNumberOfChannels; j++) { G4cerr << " j: " << j << " EmissionProbChannel: " << EmissionProbChannel[j] << " and shoot: " << shoot << " (BreakUp(theResidualNucleus); #ifdef debug G4cout << "-----------------------------------------------------------\n"; G4cout << G4endl << " After the evaporation of a particle, testing conservation \n"; CheckConservation(theResidualNucleus,theEvaporationResult); G4cout << G4endl << "------------------------------------------------------------\n"; #endif // Check if chosen channel is fission (there are only two EXCITED fragments) // or the channel could not evaporate anything if ( theEvaporationResult->size() == 1 || ((*(theEvaporationResult->begin()))->GetExcitationEnergy() > 0.0 && (*(theEvaporationResult->end()-1))->GetExcitationEnergy() > 0.0) ) { // FISSION for (G4FragmentVector::iterator i = theEvaporationResult->begin(); i != theEvaporationResult->end(); ++i) { theResult->push_back(*(i)); } delete theEvaporationResult; break; } else { // EVAPORATION for (G4FragmentVector::iterator i = theEvaporationResult->begin(); i != theEvaporationResult->end()-1; ++i) { #ifdef PRECOMPOUND_TEST if ((*i)->GetA() == 0) (*i)->SetCreatorModel(G4String("G4PhotonEvaporation")); #endif theResult->push_back(*(i)); } theResidualNucleus = *(theEvaporationResult->back()); delete theEvaporationResult->back(); delete theEvaporationResult; #ifdef PRECOMPOUND_TEST theResidualNucleus.SetCreatorModel(G4String("ResidualNucleus")); #endif } } } } #ifdef debug G4cout << "======== Evaporation Conservation Test ===========\n" << "==================================================\n"; CheckConservation(theNucleus,theResult); G4cout << "==================================================\n"; #endif return theResult; } #ifdef debug void G4Evaporation::CheckConservation(const G4Fragment & theInitialState, G4FragmentVector * Result) const { G4double ProductsEnergy =0; G4ThreeVector ProductsMomentum; G4int ProductsA = 0; G4int ProductsZ = 0; for (G4FragmentVector::iterator h = Result->begin(); h != Result->end(); h++) { G4LorentzVector tmp = (*h)->GetMomentum(); ProductsEnergy += tmp.e(); ProductsMomentum += tmp.vect(); ProductsA += static_cast((*h)->GetA()); ProductsZ += static_cast((*h)->GetZ()); } if (ProductsA != theInitialState.GetA()) { G4cout << "!!!!!!!!!! Baryonic Number Conservation Violation !!!!!!!!!!" << G4endl; G4cout << "G4Evaporation.cc: Barionic Number Conservation test for evaporation fragments" << G4endl; G4cout << "Initial A = " << theInitialState.GetA() << " Fragments A = " << ProductsA << " Diference --> " << theInitialState.GetA() - ProductsA << G4endl; } if (ProductsZ != theInitialState.GetZ()) { G4cout << "!!!!!!!!!! Charge Conservation Violation !!!!!!!!!!" << G4endl; G4cout << "G4Evaporation.cc: Charge Conservation test for evaporation fragments" << G4endl; G4cout << "Initial Z = " << theInitialState.GetZ() << " Fragments Z = " << ProductsZ << " Diference --> " << theInitialState.GetZ() - ProductsZ << G4endl; } if (std::abs(ProductsEnergy-theInitialState.GetMomentum().e()) > 1.0*keV) { G4cout << "!!!!!!!!!! Energy Conservation Violation !!!!!!!!!!" << G4endl; G4cout << "G4Evaporation.cc: Energy Conservation test for evaporation fragments" << G4endl; G4cout << "Initial E = " << theInitialState.GetMomentum().e()/MeV << " MeV" << " Fragments E = " << ProductsEnergy/MeV << " MeV Diference --> " << (theInitialState.GetMomentum().e() - ProductsEnergy)/MeV << " MeV" << G4endl; } if (std::abs(ProductsMomentum.x()-theInitialState.GetMomentum().x()) > 1.0*keV || std::abs(ProductsMomentum.y()-theInitialState.GetMomentum().y()) > 1.0*keV || std::abs(ProductsMomentum.z()-theInitialState.GetMomentum().z()) > 1.0*keV) { G4cout << "!!!!!!!!!! Momentum Conservation Violation !!!!!!!!!!" << G4endl; G4cout << "G4Evaporation.cc: Momentum Conservation test for evaporation fragments" << G4endl; G4cout << "Initial P = " << theInitialState.GetMomentum().vect() << " MeV" << " Fragments P = " << ProductsMomentum << " MeV Diference --> " << theInitialState.GetMomentum().vect() - ProductsMomentum << " MeV" << G4endl; } return; } #endif