// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // //J.M. Quesada (August2008). Based on: // // Hadronic Process: Nuclear De-excitations // by V. Lara (Oct 1998) // // Modif (03 September 2008) by J. M. Quesada for external choice of inverse // cross section option #include "G4NeutronEvaporationProbability.hh" G4NeutronEvaporationProbability::G4NeutronEvaporationProbability() : G4EvaporationProbability(1,0,2,&theCoulombBarrier) // A,Z,Gamma,&theCoulombBarrier { } G4NeutronEvaporationProbability::G4NeutronEvaporationProbability(const G4NeutronEvaporationProbability &) : G4EvaporationProbability() { throw G4HadronicException(__FILE__, __LINE__, "G4NeutronEvaporationProbability::copy_constructor meant to not be accessable"); } const G4NeutronEvaporationProbability & G4NeutronEvaporationProbability:: operator=(const G4NeutronEvaporationProbability &) { throw G4HadronicException(__FILE__, __LINE__, "G4NeutronEvaporationProbability::operator= meant to not be accessable"); return *this; } G4bool G4NeutronEvaporationProbability::operator==(const G4NeutronEvaporationProbability &) const { return false; } G4bool G4NeutronEvaporationProbability::operator!=(const G4NeutronEvaporationProbability &) const { return true; } G4double G4NeutronEvaporationProbability::CalcAlphaParam(const G4Fragment & fragment) { return 0.76+2.2/std::pow(static_cast(fragment.GetA()-GetA()),1.0/3.0);} G4double G4NeutronEvaporationProbability::CalcBetaParam(const G4Fragment & fragment) { return (2.12/std::pow(static_cast(fragment.GetA()-GetA()),2.0/3.0) - 0.05)*MeV/ CalcAlphaParam(fragment); } //////////////////////////////////////////////////////////////////////////////////// //J. M. Quesada (Dec 2007-June 2008): New inverse reaction cross sections //OPT=0 Dostrovski's parameterization //OPT=1,2 Chatterjee's paramaterization //OPT=3,4 Kalbach's parameterization // G4double G4NeutronEvaporationProbability::CrossSection(const G4Fragment & fragment, const G4double K) { theA=GetA(); theZ=GetZ(); ResidualA=fragment.GetA()-theA; ResidualZ=fragment.GetZ()-theZ; ResidualAthrd=std::pow(ResidualA,0.33333); FragmentA=fragment.GetA(); FragmentAthrd=std::pow(FragmentA,0.33333); if (OPTxs==0) {std::ostringstream errOs; errOs << "We should'n be here (OPT =0) at evaporation cross section calculation (neutrons)!!" <50) Kc=50; G4double landa, landa0, landa1, mu, mu0, mu1,nu, nu0, nu1, nu2,xs; landa0 = 18.57; landa1 = -22.93; mu0 = 381.7; mu1 = 24.31; nu0 = 0.172; nu1 = -15.39; nu2 = 804.8; landa = landa0/ResidualAthrd + landa1; mu = mu0*ResidualAthrd + mu1*ResidualAthrd*ResidualAthrd; nu = nu0*ResidualAthrd*ResidualA + nu1*ResidualAthrd*ResidualAthrd + nu2 ; xs=landa*Kc + mu + nu/Kc; if (xs <= 0.0 ){ std::ostringstream errOs; G4cout<<"WARNING: NEGATIVE OPT=1 neutron cross section "<