// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // $Id: G4ProtonEvaporationProbability.cc,v 1.17 2010/11/17 11:06:03 vnivanch Exp $ // GEANT4 tag $Name: geant4-09-04-ref-00 $ // // J.M. Quesada (August2008). Based on: // // Hadronic Process: Nuclear De-excitations // by V. Lara (Oct 1998) // // Modified: // 03-09-2008 J.M. Quesada for external choice of inverse cross section option // 17-11-2010 V.Ivanchenko integer Z and A #include "G4ProtonEvaporationProbability.hh" G4ProtonEvaporationProbability::G4ProtonEvaporationProbability() : G4EvaporationProbability(1,1,2,&theCoulombBarrier) // A,Z,Gamma,&theCoulombBarrier {} G4ProtonEvaporationProbability::~G4ProtonEvaporationProbability() {} G4double G4ProtonEvaporationProbability::CalcAlphaParam(const G4Fragment & fragment) { return 1.0 + CCoeficient(fragment.GetZ_asInt()-GetZ());} G4double G4ProtonEvaporationProbability::CalcBetaParam(const G4Fragment & ) { return 0.0; } G4double G4ProtonEvaporationProbability::CCoeficient(G4int aZ) { // Data comes from // Dostrovsky, Fraenkel and Friedlander // Physical Review, vol 116, num. 3 1959 // // const G4int size = 5; // G4double Zlist[5] = { 10.0, 20.0, 30.0, 50.0, 70.0}; // G4double Cp[5] = { 0.50, 0.28, 0.20, 0.15, 0.10}; G4double C = 0.0; if (aZ >= 70) { C = 0.10; } else { C = ((((0.15417e-06*aZ) - 0.29875e-04)*aZ + 0.21071e-02)*aZ - 0.66612e-01)*aZ + 0.98375; } return C; } /////////////////////////////////////////////////////////////////////////////////// //J. M. Quesada (Dec 2007-June 2008): New inverse reaction cross sections for protons //OPT=0 Dostrovski's parameterization //OPT=1 Chatterjee's parameterization //OPT=2,4 Wellisch's parameterization //OPT=3 Kalbach's parameterization // G4double G4ProtonEvaporationProbability::CrossSection(const G4Fragment & fragment, G4double K) { // G4cout<<" In G4ProtonEVaporationProbability OPTxs="< 50*MeV) { Kc = 50*MeV; } G4double landa, landa0, landa1, mu, mu0, mu1,nu, nu0, nu1, nu2,xs; G4double p, p0, p1, p2,Ec,delta,q,r,ji; p0 = 15.72; p1 = 9.65; p2 = -449.0; landa0 = 0.00437; landa1 = -16.58; mu0 = 244.7; mu1 = 0.503; nu0 = 273.1; nu1 = -182.4; nu2 = -1.872; delta=0.; Ec = 1.44*theZ*ResidualZ/(1.5*ResidualAthrd+delta); p = p0 + p1/Ec + p2/(Ec*Ec); landa = landa0*ResidualA + landa1; G4double resmu1 = fG4pow->powZ(ResidualA,mu1); mu = mu0*resmu1; nu = resmu1*(nu0 + nu1*Ec + nu2*(Ec*Ec)); q = landa - nu/(Ec*Ec) - 2*p*Ec; r = mu + 2*nu/Ec + p*(Ec*Ec); ji=std::max(Kc,Ec); if(Kc < Ec) { xs = p*Kc*Kc + q*Kc + r;} else {xs = p*(Kc - ji)*(Kc - ji) + landa*Kc + mu + nu*(2 - Kc/ji)/ji ;} if (xs <0.0) {xs=0.0;} return xs; } //************* OPT=2 : Welisch's proton reaction cross section *************** G4double G4ProtonEvaporationProbability::GetOpt2(G4double K) { G4double eekin,ekin,ff1,ff2,ff3,r0,fac,fac1,fac2,b0,xine_th(0); // This is redundant when the Coulomb barrier is overimposed to all // cross sections // It should be kept when Coulomb barrier only imposed at OPTxs=2 if(!useSICB && K<=theCoulombBarrier.GetCoulombBarrier(ResidualA,ResidualZ,U)) { return 0.0; } eekin=K; G4int rnneu=ResidualA-ResidualZ; ekin=eekin/1000; r0=1.36*1.e-15; fac=pi*r0*r0; b0=2.247-0.915*(1.-1./ResidualAthrd); fac1=b0*(1.-1./ResidualAthrd); fac2=1.; if(rnneu > 1.5) { fac2 = fG4pow->logZ(rnneu); } xine_th= 1.e+31*fac*fac2*(1.+ResidualAthrd-fac1); xine_th=(1.-0.15*std::exp(-ekin))*xine_th/(1.00-0.0007*ResidualA); ff1=0.70-0.0020*ResidualA; ff2=1.00+1/G4double(ResidualA); ff3=0.8+18/G4double(ResidualA)-0.002*ResidualA; fac=1.-(1./(1.+std::exp(-8.*ff1*(std::log10(ekin)+1.37*ff2)))); xine_th=xine_th*(1.+ff3*fac); ff1=1.-1/G4double(ResidualA)-0.001*ResidualA; ff2=1.17-2.7/G4double(ResidualA)-0.0014*ResidualA; fac=-8.*ff1*(std::log10(ekin)+2.0*ff2); fac=1./(1.+std::exp(fac)); xine_th=xine_th*fac; if (xine_th < 0.0){ std::ostringstream errOs; G4cout<<"WARNING: negative Wellisch cross section "<