// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // //J.M. Quesada (August2008). Based on: // // Hadronic Process: Nuclear De-excitations // by V. Lara (Oct 1998) // // Modif (03 September 2008) by J. M. Quesada for external choice of inverse // cross section option #include "G4ProtonEvaporationProbability.hh" G4ProtonEvaporationProbability::G4ProtonEvaporationProbability() : G4EvaporationProbability(1,1,2,&theCoulombBarrier) // A,Z,Gamma,&theCoulombBarrier { } G4ProtonEvaporationProbability::G4ProtonEvaporationProbability(const G4ProtonEvaporationProbability &) : G4EvaporationProbability() { throw G4HadronicException(__FILE__, __LINE__, "G4ProtonEvaporationProbability::copy_constructor meant to not be accessable"); } const G4ProtonEvaporationProbability & G4ProtonEvaporationProbability:: operator=(const G4ProtonEvaporationProbability &) { throw G4HadronicException(__FILE__, __LINE__, "G4ProtonEvaporationProbability::operator= meant to not be accessable"); return *this; } G4bool G4ProtonEvaporationProbability::operator==(const G4ProtonEvaporationProbability &) const { return false; } G4bool G4ProtonEvaporationProbability::operator!=(const G4ProtonEvaporationProbability &) const { return true; } G4double G4ProtonEvaporationProbability::CalcAlphaParam(const G4Fragment & fragment) { return 1.0 + CCoeficient(static_cast(fragment.GetZ()-GetZ()));} G4double G4ProtonEvaporationProbability::CalcBetaParam(const G4Fragment & ) { return 0.0; } G4double G4ProtonEvaporationProbability::CCoeficient(const G4double aZ) { // Data comes from // Dostrovsky, Fraenkel and Friedlander // Physical Review, vol 116, num. 3 1959 // // const G4int size = 5; // G4double Zlist[5] = { 10.0, 20.0, 30.0, 50.0, 70.0}; // G4double Cp[5] = { 0.50, 0.28, 0.20, 0.15, 0.10}; G4double C = 0.0; if (aZ >= 70) { C = 0.10; } else { C = ((((0.15417e-06*aZ) - 0.29875e-04)*aZ + 0.21071e-02)*aZ - 0.66612e-01)*aZ + 0.98375; } return C; } /////////////////////////////////////////////////////////////////////////////////// //J. M. Quesada (Dec 2007-June 2008): New inverse reaction cross sections //OPT=0 Dostrovski's parameterization //OPT=1,2 Chatterjee's paramaterization //OPT=3,4 Kalbach's parameterization // G4double G4ProtonEvaporationProbability::CrossSection(const G4Fragment & fragment, const G4double K) { // G4cout<<" In G4ProtonEVaporationProbability OPTxs="<50) Kc=50; G4double landa, landa0, landa1, mu, mu0, mu1,nu, nu0, nu1, nu2,xs; G4double p, p0, p1, p2,Ec,delta,q,r,ji; p0 = 15.72; p1 = 9.65; p2 = -449.0; landa0 = 0.00437; landa1 = -16.58; mu0 = 244.7; mu1 = 0.503; nu0 = 273.1; nu1 = -182.4; nu2 = -1.872; delta=0.; Ec = 1.44*theZ*ResidualZ/(1.5*ResidualAthrd+delta); p = p0 + p1/Ec + p2/(Ec*Ec); landa = landa0*ResidualA + landa1; mu = mu0*std::pow(ResidualA,mu1); nu = std::pow(ResidualA,mu1)*(nu0 + nu1*Ec + nu2*(Ec*Ec)); q = landa - nu/(Ec*Ec) - 2*p*Ec; r = mu + 2*nu/Ec + p*(Ec*Ec); ji=std::max(Kc,Ec); if(Kc < Ec) { xs = p*Kc*Kc + q*Kc + r;} else {xs = p*(Kc - ji)*(Kc - ji) + landa*Kc + mu + nu*(2 - Kc/ji)/ji ;} if (xs <0.0) {xs=0.0;} return xs; } //************* OPT=2 : Wellisch's proton reaction cross section ************************ G4double G4ProtonEvaporationProbability::GetOpt2(const G4double K) { G4double rnpro,rnneu,eekin,ekin,ff1,ff2,ff3,r0,fac,fac1,fac2,b0,xine_th(0); //This is redundant when the Coulomb barrier is overimposed to all cross sections //It should be kept when Coulomb barrier only imposed at OPTxs=2, this is why .. if(!useSICB && K <= theCoulombBarrier.GetCoulombBarrier(G4lrint(ResidualA),G4lrint(ResidualZ),U)) return xine_th=0.0; eekin=K; rnpro=ResidualZ; rnneu=ResidualA-ResidualZ; ekin=eekin/1000; r0=1.36*1.e-15; fac=pi*r0*r0; b0=2.247-0.915*(1.-1./ResidualAthrd); fac1=b0*(1.-1./ResidualAthrd); fac2=1.; if(rnneu > 1.5) fac2=std::log(rnneu); xine_th= 1.e+31*fac*fac2*(1.+ResidualAthrd-fac1); xine_th=(1.-0.15*std::exp(-ekin))*xine_th/(1.00-0.0007*ResidualA); ff1=0.70-0.0020*ResidualA ; ff2=1.00+1/ResidualA; ff3=0.8+18/ResidualA-0.002*ResidualA; fac=1.-(1./(1.+std::exp(-8.*ff1*(std::log10(ekin)+1.37*ff2)))); xine_th=xine_th*(1.+ff3*fac); ff1=1.-1/ResidualA-0.001*ResidualA; ff2=1.17-2.7/ResidualA-0.0014*ResidualA; fac=-8.*ff1*(std::log10(ekin)+2.0*ff2); fac=1./(1.+std::exp(fac)); xine_th=xine_th*fac; if (xine_th < 0.0){ std::ostringstream errOs; G4cout<<"WARNING: negative Wellisch cross section "<