// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // Hadronic Process: Nuclear De-excitations // by V. Lara inline G4FermiPhaseSpaceDecay::G4FermiPhaseSpaceDecay() { } inline G4FermiPhaseSpaceDecay::~G4FermiPhaseSpaceDecay() { } inline G4FermiPhaseSpaceDecay::G4FermiPhaseSpaceDecay(const G4FermiPhaseSpaceDecay&) { // This is meant to not be used } inline const G4FermiPhaseSpaceDecay & G4FermiPhaseSpaceDecay::operator=(const G4FermiPhaseSpaceDecay&) { //This is menat to not be used return *this; } inline G4bool G4FermiPhaseSpaceDecay::operator==(const G4FermiPhaseSpaceDecay&) { // This is meant to not be used return false; } inline G4bool G4FermiPhaseSpaceDecay::operator!=(const G4FermiPhaseSpaceDecay&) { // This is meant to not be used return true; } inline G4double G4FermiPhaseSpaceDecay::PtwoBody(G4double E, G4double P1, G4double P2) const { G4double P = (E+P1+P2)*(E+P1-P2)*(E-P1+P2)*(E-P1-P2)/(4.0*E*E); if (P>0.0) return std::sqrt(P); else return -1.0; } inline std::vector * G4FermiPhaseSpaceDecay:: Decay(const G4double parent_mass, const std::vector& fragment_masses) const { // if (fragment_masses.size() == 2) // { // return this->TwoBodyDecay(parent_mass,fragment_masses); // } // else return this->NBodyDecay(parent_mass,fragment_masses); // else // { return this->KopylovNBodyDecay(parent_mass,fragment_masses); // } } inline G4double G4FermiPhaseSpaceDecay::BetaKopylov(const G4int K) const { // Notice that alpha > beta always const G4double beta = 1.5; G4double alpha = 1.5*(K-1); G4double Y1 = CLHEP::RandGamma::shoot(alpha,1); G4double Y2 = CLHEP::RandGamma::shoot(beta,1); return Y1/(Y1+Y2); }