// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // // Hadronic Process: Nuclear De-excitations // by V. Lara (Nov 1998) #include "G4FermiBreakUp.hh" #include "G4HadronicException.hh" G4FermiBreakUp::G4FermiBreakUp() { } G4FermiBreakUp::G4FermiBreakUp(const G4FermiBreakUp &) : G4VFermiBreakUp() { throw G4HadronicException(__FILE__, __LINE__, "G4FermiBreakUp::copy_constructor meant to not be accessable"); } G4FermiBreakUp::~G4FermiBreakUp() { } const G4FermiBreakUp & G4FermiBreakUp::operator=(const G4FermiBreakUp &) { throw G4HadronicException(__FILE__, __LINE__, "G4FermiBreakUp::operator= meant to not be accessable"); return *this; } G4bool G4FermiBreakUp::operator==(const G4FermiBreakUp &) const { return false; } G4bool G4FermiBreakUp::operator!=(const G4FermiBreakUp &) const { return true; } G4FragmentVector * G4FermiBreakUp::BreakItUp(const G4Fragment &theNucleus) { // CHECK that Excitation Energy > 0 if (theNucleus.GetExcitationEnergy() <= 0) { G4FragmentVector * theResult = new G4FragmentVector; theResult->push_back(new G4Fragment(theNucleus)); return theResult; } // Total energy of nucleus in nucleus rest frame G4double TotalEnergyRF = theNucleus.GetMomentum().m(); // G4double TotalEnergyRF = theNucleus.GetExcitationEnergy() + // G4ParticleTable::GetParticleTable()->GetIonTable()-> // GetIonMass(static_cast(theNucleus.GetZ()),static_cast(theNucleus.GetA())); G4FermiConfigurationList theConfigurationList; // Split the nucleus G4bool Split = theConfigurationList.Initialize(static_cast(theNucleus.GetA()), static_cast(theNucleus.GetZ()), TotalEnergyRF); if ( !Split ) { G4FragmentVector * theResult = new G4FragmentVector; theResult->push_back(new G4Fragment(theNucleus)); return theResult; } // Chose a configuration G4FermiConfiguration theConfiguration(theConfigurationList.ChooseConfiguration()); // Get the fragments corresponding to chosen configuration. G4FragmentVector * theResult = theConfiguration.GetFragments(theNucleus); #ifdef PRECOMPOUND_TEST for (G4FragmentVector::iterator i = theResult->begin(); i != theResult->end(); i++) { (*i)->SetCreatorModel("G4FermiBreakUp"); } #endif return theResult; }