// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // #ifndef G4ParaFissionModel_h #define G4ParaFissionModel_h 1 #include "G4CompetitiveFission.hh" #include "G4ExcitationHandler.hh" #include "G4HadronicInteraction.hh" #include "G4ParticleTable.hh" // Class Description // Final state production model for (based on evaluated data // libraries) description of neutron induced fission below 60 MeV; // In case you need the fission fragments, use this model. // To be used in your physics list in case you need this physics. // In this case you want to register an object of this class with // the corresponding process. class G4ParaFissionModel : public G4HadronicInteraction { public: G4ParaFissionModel() { SetMinEnergy( 0.0 ); SetMaxEnergy( 60.*MeV ); } ~G4ParaFissionModel() {}; virtual G4HadFinalState* ApplyYourself(const G4HadProjectile& aTrack, G4Nucleus& theNucleus) { theParticleChange.Clear(); theParticleChange.SetStatusChange( stopAndKill ); theParticleChange.SetEnergyChange( 0.0 ); // prepare the fragment G4int A = theNucleus.GetA_asInt(); G4int Z = theNucleus.GetZ_asInt(); G4double nucMass = G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass(Z,A); G4int numberOfEx = aTrack.GetDefinition()->GetBaryonNumber(); G4int numberOfCh = G4int(aTrack.GetDefinition()->GetPDGCharge() + 0.5); G4int numberOfHoles = 0; A += numberOfEx; Z += numberOfCh; G4LorentzVector v = aTrack.Get4Momentum() + G4LorentzVector(0.0,0.0,0.0,nucMass); G4Fragment anInitialState(Z,A,v); anInitialState.SetNumberOfExcitedParticle(numberOfEx,numberOfCh); anInitialState.SetNumberOfHoles(0,0); // do the fission G4FragmentVector * theFissionResult = theFission.BreakUp(anInitialState); // deexcite the fission fragments and fill result G4int ll = theFissionResult->size(); for(G4int i=0; iGetExcitationEnergy()>1.*eV) { theExcitationResult = theHandler.BreakItUp(*aFragment); // add secondaries for(G4int j = 0; j < G4int(theExcitationResult->size()); j++) { G4ReactionProduct* rp0 = (*theExcitationResult)[j]; G4DynamicParticle* p0 = new G4DynamicParticle(rp0->GetDefinition(),rp0->GetMomentum()); theParticleChange.AddSecondary(p0); delete rp0; } delete theExcitationResult; } else { // add secondary G4DynamicParticle* p0 = new G4DynamicParticle(aFragment->GetParticleDefinition(), aFragment->GetMomentum()); theParticleChange.AddSecondary(p0); } delete aFragment; } delete theFissionResult; return &theParticleChange; } private: G4CompetitiveFission theFission; G4ExcitationHandler theHandler; G4HadFinalState theParticleChange; }; #endif