// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // J. M. Quesada (July 2009): New class based on G4GEMCoulombBarrierHE // Coded strictly according to Furihata's GEM paper // NEW:effective decrease of barrier with E* (Barashenkov) has been added // #include "G4GEMCoulombBarrier.hh" #include "G4HadronicException.hh" #include G4GEMCoulombBarrier::G4GEMCoulombBarrier(const G4GEMCoulombBarrier & ) : G4VCoulombBarrier() { throw G4HadronicException(__FILE__, __LINE__, "G4GEMCoulombBarrier::copy_constructor meant to not be accessable."); } const G4GEMCoulombBarrier & G4GEMCoulombBarrier::operator=(const G4GEMCoulombBarrier & ) { throw G4HadronicException(__FILE__, __LINE__, "G4GEMCoulombBarrier::operator= meant to not be accessable."); return *this; } G4bool G4GEMCoulombBarrier::operator==(const G4GEMCoulombBarrier & ) const { return false; } G4bool G4GEMCoulombBarrier::operator!=(const G4GEMCoulombBarrier & ) const { return true; } G4double G4GEMCoulombBarrier::GetCoulombBarrier(const G4int ARes, const G4int ZRes, const G4double U) const // Calculation of Coulomb potential energy (barrier) for outgoing fragment { G4double Barrier = 0.0; if (ZRes > ARes || ARes < 1) { std::ostringstream errOs; errOs << "G4GEMCoulombBarrier::GetCoulombBarrier: "; errOs << "Wrong values for "; errOs << "residual nucleus A = " << ARes << " "; errOs << "and residual nucleus Z = " << ZRes << G4endl; throw G4HadronicException(__FILE__, __LINE__, errOs.str()); } if (GetZ() == 0) { Barrier = 0.0; // If there is no charge there is neither barrier } else { G4double CompoundRadius = CalcCompoundRadius(static_cast(ARes)); Barrier = ( elm_coupling * static_cast(GetZ()) * static_cast(ZRes) )/CompoundRadius; // Barrier penetration coeficient G4double K=1.; if(GetA() <= 4) K = BarrierPenetrationFactor(ZRes); Barrier *= K; } //JMQ 200709 effective decrease of barrier with E* (Barashenkov) // (not inclued in original Furihata's formulation) Barrier /= (1.0 + std::sqrt(U/(2.0*static_cast(ARes)))); // JMQ end test return Barrier; } G4double G4GEMCoulombBarrier::CalcCompoundRadius(const G4double ARes) const { G4double AresOneThird = std::pow(ARes,1.0/3.0); G4double AejectOneThird = std::pow(G4double(GetA()),1.0/3.0); if(GetA()==1){ G4double Rd=1.7* AresOneThird; return Rd*fermi; } else if (GetA()==2 || GetA()==3 || GetA()==4){ G4double Rd=1.7* AresOneThird; G4double Rj=1.2; return (Rd+Rj)*fermi; } else { G4double Result = 1.12*(AresOneThird + AejectOneThird) - 0.86*(AresOneThird+AejectOneThird)/(AresOneThird*AejectOneThird)+3.75; return Result*fermi;} }