// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // $Id: G4ExcitationHandler.hh,v 1.12 2010/04/27 14:00:23 vnivanch Exp $ // GEANT4 tag $Name: geant4-09-03-ref-09 $ // // Hadronic Process: Nuclear De-excitations // by V. Lara (May 1998) // // Modif (03 September 2008) by J. M. Quesada for external choice of inverse // cross section option // // Modif (30 June 1998) by V. Lara: // -Using G4ParticleTable and therefore G4IonTable // it can return all kind of fragments produced in // deexcitation // -It uses default algorithms for: // Evaporation: G4StatEvaporation // MultiFragmentation: G4DummyMF (a dummy one) // Fermi Breakup model: G4StatFermiBreakUp // // Modif (03 September 2008) by J. M. Quesada for external choice of inverse // cross section option // JMQ (06 September 2008) Also external choices have been added for // superimposed Coulomb barrier (if useSICBis set true, by default is false) #ifndef G4ExcitationHandler_h #define G4ExcitationHandler_h 1 #include "G4VMultiFragmentation.hh" #include "G4VFermiBreakUp.hh" #include "G4VEvaporation.hh" #include "G4VPhotonEvaporation.hh" #include "G4VEvaporationChannel.hh" #include "G4Fragment.hh" #include "G4DynamicParticle.hh" #include "G4ReactionProductVector.hh" #include "G4ReactionProduct.hh" #include "G4ParticleTypes.hh" #include "G4ParticleTable.hh" // needed for default models #include "G4Evaporation.hh" #include "G4StatMF.hh" #include "G4FermiBreakUp.hh" #include "G4PhotonEvaporation.hh" #include "G4IonConstructor.hh" class G4ExcitationHandler { public: G4ExcitationHandler(); ~G4ExcitationHandler(); private: G4ExcitationHandler(const G4ExcitationHandler &right); const G4ExcitationHandler & operator=(const G4ExcitationHandler &right); G4bool operator==(const G4ExcitationHandler &right) const; G4bool operator!=(const G4ExcitationHandler &right) const; public: G4ReactionProductVector * BreakItUp(const G4Fragment &theInitialState) const; void SetEvaporation(G4VEvaporation *const value); void SetMultiFragmentation(G4VMultiFragmentation *const value); void SetFermiModel(G4VFermiBreakUp *const value); void SetPhotonEvaporation(G4VEvaporationChannel * const value); void SetMaxZForFermiBreakUp(G4int aZ); void SetMaxAForFermiBreakUp(G4int anA); void SetMaxAandZForFermiBreakUp(G4int anA,G4int aZ); void SetMinEForMultiFrag(G4double anE); // for inverse cross section choice inline void SetOPTxs(G4int opt); // for superimposed Coulomb Barrir for inverse cross sections inline void UseSICB(); private: void SetParameters(); G4ReactionProductVector * Transform(G4FragmentVector * theFragmentVector) const; const G4VEvaporation * GetEvaporation() const; const G4VMultiFragmentation * GetMultiFragmentation() const; const G4VFermiBreakUp * GetFermiModel() const; const G4VEvaporationChannel * GetPhotonEvaporation() const; G4int GetMaxZ() const; G4int GetMaxA() const; G4double GetMinE() const; #ifdef debug void CheckConservation(const G4Fragment & aFragment, G4FragmentVector * Result) const; #endif private: G4VEvaporation *theEvaporation; G4VMultiFragmentation *theMultiFragmentation; G4VFermiBreakUp *theFermiModel; G4VEvaporationChannel * thePhotonEvaporation; G4int maxZForFermiBreakUp; G4int maxAForFermiBreakUp; G4double minEForMultiFrag; G4double minExcitation; G4ParticleTable *theTableOfParticles; G4bool MyOwnEvaporationClass; G4bool MyOwnMultiFragmentationClass; G4bool MyOwnFermiBreakUpClass; G4bool MyOwnPhotonEvaporationClass; G4int OPTxs; G4bool useSICB; struct DeleteFragment { template void operator()(const T* ptr) const { delete ptr; } }; }; inline void G4ExcitationHandler::SetOPTxs(G4int opt) { OPTxs = opt; SetParameters(); } inline void G4ExcitationHandler::UseSICB() { useSICB = true; SetParameters(); } inline const G4VEvaporation * G4ExcitationHandler::GetEvaporation() const { return theEvaporation; } inline void G4ExcitationHandler::SetEvaporation(G4VEvaporation *const value) { if (theEvaporation != 0 && MyOwnEvaporationClass) delete theEvaporation; MyOwnEvaporationClass = false; theEvaporation = value; SetParameters(); } inline const G4VMultiFragmentation * G4ExcitationHandler::GetMultiFragmentation() const { return theMultiFragmentation; } inline void G4ExcitationHandler::SetMultiFragmentation(G4VMultiFragmentation *const value) { if (theMultiFragmentation != 0 && MyOwnMultiFragmentationClass) delete theMultiFragmentation; MyOwnMultiFragmentationClass = false; theMultiFragmentation = value; } inline const G4VFermiBreakUp * G4ExcitationHandler::GetFermiModel() const { return theFermiModel; } inline void G4ExcitationHandler::SetFermiModel(G4VFermiBreakUp *const value) { if (theFermiModel != 0 && MyOwnFermiBreakUpClass) delete theFermiModel; MyOwnFermiBreakUpClass = false; theFermiModel = value; } inline const G4VEvaporationChannel * G4ExcitationHandler::GetPhotonEvaporation() const { return thePhotonEvaporation; } inline void G4ExcitationHandler::SetPhotonEvaporation(G4VEvaporationChannel *const value) { if (thePhotonEvaporation != 0 && MyOwnPhotonEvaporationClass) delete thePhotonEvaporation; MyOwnPhotonEvaporationClass = false; thePhotonEvaporation = value; } inline void G4ExcitationHandler::SetMaxZForFermiBreakUp(G4int aZ) { maxZForFermiBreakUp = aZ; } inline void G4ExcitationHandler::SetMaxAForFermiBreakUp(G4int anA) { maxAForFermiBreakUp = anA; } inline void G4ExcitationHandler::SetMaxAandZForFermiBreakUp(G4int anA, G4int aZ) { maxAForFermiBreakUp = anA; maxZForFermiBreakUp = aZ; } inline void G4ExcitationHandler::SetMinEForMultiFrag(G4double anE) { minEForMultiFrag = anE; } inline G4int G4ExcitationHandler::GetMaxZ() const { return maxZForFermiBreakUp; } inline G4int G4ExcitationHandler::GetMaxA() const { return maxAForFermiBreakUp; } inline G4double G4ExcitationHandler::GetMinE() const { return minEForMultiFrag; } #endif