// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: G4StatMFChannel.hh,v 1.3 2006/06/29 20:24:05 gunter Exp $ // GEANT4 tag $Name: geant4-09-03-ref-09 $ // // Hadronic Process: Nuclear De-excitations // by V. Lara #ifndef G4StatMFChannel_h #define G4StatMFChannel_h 1 #include #include "G4StatMFParameters.hh" #include "G4StatMFFragment.hh" class G4StatMFChannel { public: // Default Constructor G4StatMFChannel() : _NumOfNeutralFragments(0), _NumOfChargedFragments(0) {} // Destructor ~G4StatMFChannel() { if (!_theFragments.empty()) { std::for_each(_theFragments.begin(),_theFragments.end(), DeleteFragment()); } } private: // Copy constructor G4StatMFChannel(const G4StatMFChannel & right); // operators G4StatMFChannel & operator=(const G4StatMFChannel & right); public: G4bool operator==(const G4StatMFChannel & right) const; G4bool operator!=(const G4StatMFChannel & right) const; public: void CreateFragment(const G4double A, const G4double Z); G4int GetMultiplicity(void) { return _theFragments.size();} // Return false if there is some unphysical fragment G4bool CheckFragments(void); G4double GetFragmentsCoulombEnergy(void); G4double GetFragmentsEnergy(const G4double T) const; G4FragmentVector * GetFragments(const G4double anA, const G4double anZ, const G4double T); private: // This method calculates asymptotic fragments momenta. void CoulombImpulse(const G4double anA, const G4double anZ, const G4double T); void PlaceFragments(const G4double anA); void SolveEqOfMotion(const G4double anA, const G4double anZ, const G4double T); // Calculates fragments momentum components at the breakup instant. // Fragment kinetic energies will be calculated according to the // Boltzamann distribution at given temperature. void FragmentsMomenta(const G4int NF, const G4int idx, const G4double T); // Samples a isotropic random vectorwith a magnitud given by Magnitude. // By default Magnitude = 1 G4ThreeVector IsotropicVector(const G4double Magnitude = 1.0); // Rotates a 3-vector P to close momentum triangle Pa + V + P = 0 G4ThreeVector RotateMomentum(G4ThreeVector Pa, G4ThreeVector V, G4ThreeVector P); private: std::deque _theFragments; G4int _NumOfNeutralFragments; G4int _NumOfChargedFragments; struct DeleteFragment { template void operator()(const T* ptr) const { delete ptr; } }; }; #endif