// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: G4StatMF.cc,v 1.6 2008/07/25 11:20:47 vnivanch Exp $ // GEANT4 tag $Name: geant4-09-03 $ // // Hadronic Process: Nuclear De-excitations // by V. Lara #include "G4StatMF.hh" // Default constructor G4StatMF::G4StatMF() : _theEnsemble(0) {} // Destructor G4StatMF::~G4StatMF() {} //{if (_theEnsemble != 0) delete _theEnsemble;} // Copy constructor G4StatMF::G4StatMF(const G4StatMF & ) : G4VMultiFragmentation() { throw G4HadronicException(__FILE__, __LINE__, "G4StatMF::copy_constructor meant to not be accessable"); } // Operators G4StatMF & G4StatMF::operator=(const G4StatMF & ) { throw G4HadronicException(__FILE__, __LINE__, "G4StatMF::operator= meant to not be accessable"); return *this; } G4bool G4StatMF::operator==(const G4StatMF & ) { throw G4HadronicException(__FILE__, __LINE__, "G4StatMF::operator== meant to not be accessable"); return false; } G4bool G4StatMF::operator!=(const G4StatMF & ) { throw G4HadronicException(__FILE__, __LINE__, "G4StatMF::operator!= meant to not be accessable"); return true; } G4FragmentVector * G4StatMF::BreakItUp(const G4Fragment &theFragment) { // G4FragmentVector * theResult = new G4FragmentVector; if (theFragment.GetExcitationEnergy() <= 0.0) { G4FragmentVector * theResult = new G4FragmentVector; theResult->push_back(new G4Fragment(theFragment)); return 0; } // Maximun average multiplicity: M_0 = 2.6 for A ~ 200 // and M_0 = 3.3 for A <= 110 G4double MaxAverageMultiplicity = G4StatMFParameters::GetMaxAverageMultiplicity(static_cast(theFragment.GetA())); // We'll use two kinds of ensembles G4StatMFMicroCanonical * theMicrocanonicalEnsemble = 0; G4StatMFMacroCanonical * theMacrocanonicalEnsemble = 0; //------------------------------------------------------- // Direct simulation part (Microcanonical ensemble) //------------------------------------------------------- // Microcanonical ensemble initialization theMicrocanonicalEnsemble = new G4StatMFMicroCanonical(theFragment); G4int Iterations = 0; G4int IterationsLimit = 100000; G4double Temperature = 0.0; G4bool FirstTime = true; G4StatMFChannel * theChannel = 0; G4bool ChannelOk; do { // Try to de-excite as much as IterationLimit permits do { G4double theMeanMult = theMicrocanonicalEnsemble->GetMeanMultiplicity(); if (theMeanMult <= MaxAverageMultiplicity) { // G4cout << "MICROCANONICAL" << G4endl; // Choose fragments atomic numbers and charges from direct simulation theChannel = theMicrocanonicalEnsemble->ChooseAandZ(theFragment); _theEnsemble = theMicrocanonicalEnsemble; } else { //----------------------------------------------------- // Non direct simulation part (Macrocanonical Ensemble) //----------------------------------------------------- if (FirstTime) { // Macrocanonical ensemble initialization theMacrocanonicalEnsemble = new G4StatMFMacroCanonical(theFragment); _theEnsemble = theMacrocanonicalEnsemble; FirstTime = false; } // G4cout << "MACROCANONICAL" << G4endl; // Select calculated fragment total multiplicity, // fragment atomic numbers and fragment charges. theChannel = theMacrocanonicalEnsemble->ChooseAandZ(theFragment); } ChannelOk = theChannel->CheckFragments(); if (!ChannelOk) delete theChannel; } while (!ChannelOk); if (theChannel->GetMultiplicity() <= 1) { G4FragmentVector * theResult = new G4FragmentVector; theResult->push_back(new G4Fragment(theFragment)); delete theMicrocanonicalEnsemble; if (theMacrocanonicalEnsemble != 0) delete theMacrocanonicalEnsemble; delete theChannel; return theResult; } //-------------------------------------- // Second part of simulation procedure. //-------------------------------------- // Find temperature of breaking channel. Temperature = _theEnsemble->GetMeanTemperature(); // Initial guess for Temperature if (FindTemperatureOfBreakingChannel(theFragment,theChannel,Temperature)) break; // Do not forget to delete this unusable channel, for which we failed to find the temperature, // otherwise for very proton-reach nuclei it would lead to memory leak due to large // number of iterations. N.B. "theChannel" is created in G4StatMFMacroCanonical::ChooseZ() // G4cout << " Iteration # " << Iterations << " Mean Temperature = " << Temperature << G4endl; delete theChannel; } while (Iterations++ < IterationsLimit ); // If Iterations >= IterationsLimit means that we couldn't solve for temperature if (Iterations >= IterationsLimit) throw G4HadronicException(__FILE__, __LINE__, "G4StatMF::BreakItUp: Was not possible to solve for temperature of breaking channel"); G4FragmentVector * theResult = theChannel-> GetFragments(theFragment.GetA(),theFragment.GetZ(),Temperature); // ~~~~~~ Energy conservation Patch !!!!!!!!!!!!!!!!!!!!!! // Original nucleus 4-momentum in CM system G4LorentzVector InitialMomentum(theFragment.GetMomentum()); InitialMomentum.boost(-InitialMomentum.boostVector()); G4double ScaleFactor = 0.0; G4double SavedScaleFactor = 0.0; do { G4double FragmentsEnergy = 0.0; G4FragmentVector::iterator j; for (j = theResult->begin(); j != theResult->end(); j++) FragmentsEnergy += (*j)->GetMomentum().e(); SavedScaleFactor = ScaleFactor; ScaleFactor = InitialMomentum.e()/FragmentsEnergy; G4ThreeVector ScaledMomentum(0.0,0.0,0.0); for (j = theResult->begin(); j != theResult->end(); j++) { ScaledMomentum = ScaleFactor * (*j)->GetMomentum().vect(); G4double Mass = (*j)->GetMomentum().m(); G4LorentzVector NewMomentum; NewMomentum.setVect(ScaledMomentum); NewMomentum.setE(std::sqrt(ScaledMomentum.mag2()+Mass*Mass)); (*j)->SetMomentum(NewMomentum); } } while (ScaleFactor > 1.0+1.e-5 && std::abs(ScaleFactor-SavedScaleFactor)/ScaleFactor > 1.e-10); // ~~~~~~ End of patch !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! // Perform Lorentz boost G4FragmentVector::iterator i; for (i = theResult->begin(); i != theResult->end(); i++) { G4LorentzVector FourMom = (*i)->GetMomentum(); FourMom.boost(theFragment.GetMomentum().boostVector()); (*i)->SetMomentum(FourMom); #ifdef PRECOMPOUND_TEST (*i)->SetCreatorModel(G4String("G4StatMF")); #endif } // garbage collection delete theMicrocanonicalEnsemble; if (theMacrocanonicalEnsemble != 0) delete theMacrocanonicalEnsemble; delete theChannel; return theResult; } G4bool G4StatMF::FindTemperatureOfBreakingChannel(const G4Fragment & theFragment, const G4StatMFChannel * aChannel, G4double & Temperature) // This finds temperature of breaking channel. { G4double A = theFragment.GetA(); G4double Z = theFragment.GetZ(); G4double U = theFragment.GetExcitationEnergy(); G4double T = std::max(Temperature,0.0012*MeV); G4double Ta = T; G4double Tb = T; G4double TotalEnergy = CalcEnergy(A,Z,aChannel,T); G4double Da = (U - TotalEnergy)/U; G4double Db = 0.0; // bracketing the solution if (Da == 0.0) { Temperature = T; return true; } else if (Da < 0.0) { do { Tb -= 0.5 * std::abs(Tb); T = Tb; if (Tb < 0.001*MeV) return false; TotalEnergy = CalcEnergy(A,Z,aChannel,T); Db = (U - TotalEnergy)/U; } while (Db < 0.0); } else { do { Tb += 0.5 * std::abs(Tb); T = Tb; TotalEnergy = CalcEnergy(A,Z,aChannel,T); Db = (U - TotalEnergy)/U; } while (Db > 0.0); } G4double eps = 1.0e-14 * std::abs(Tb-Ta); //G4double eps = 1.0e-3 ; // Start the bisection method for (G4int j = 0; j < 1000; j++) { G4double Tc = (Ta+Tb)/2.0; if (std::abs(Ta-Tc) <= eps) { Temperature = Tc; return true; } T = Tc; TotalEnergy = CalcEnergy(A,Z,aChannel,T); G4double Dc = (U - TotalEnergy)/U; if (Dc == 0.0) { Temperature = Tc; return true; } if (Da*Dc < 0.0) { Tb = Tc; Db = Dc; } else { Ta = Tc; Da = Dc; } } Temperature = (Ta+Tb)/2.0; return false; } G4double G4StatMF::CalcEnergy(const G4double A, const G4double Z, const G4StatMFChannel * aChannel, const G4double T) { G4double MassExcess0 = G4NucleiProperties::GetMassExcess(static_cast(A),static_cast(Z)); G4double Coulomb = (3./5.)*(elm_coupling*Z*Z)*std::pow(1.0+G4StatMFParameters::GetKappaCoulomb(),1./3.)/ (G4StatMFParameters::Getr0()*std::pow(A,1./3.)); G4double ChannelEnergy = aChannel->GetFragmentsEnergy(T); return -MassExcess0 + Coulomb + ChannelEnergy; }