| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // $Id: G4StatMF.cc,v 1.6 2008/07/25 11:20:47 vnivanch Exp $
|
|---|
| 28 | // GEANT4 tag $Name: geant4-09-03-cand-01 $
|
|---|
| 29 | //
|
|---|
| 30 | // Hadronic Process: Nuclear De-excitations
|
|---|
| 31 | // by V. Lara
|
|---|
| 32 |
|
|---|
| 33 | #include "G4StatMF.hh"
|
|---|
| 34 |
|
|---|
| 35 |
|
|---|
| 36 |
|
|---|
| 37 | // Default constructor
|
|---|
| 38 | G4StatMF::G4StatMF() : _theEnsemble(0) {}
|
|---|
| 39 |
|
|---|
| 40 |
|
|---|
| 41 | // Destructor
|
|---|
| 42 | G4StatMF::~G4StatMF() {} //{if (_theEnsemble != 0) delete _theEnsemble;}
|
|---|
| 43 |
|
|---|
| 44 |
|
|---|
| 45 | // Copy constructor
|
|---|
| 46 | G4StatMF::G4StatMF(const G4StatMF & ) : G4VMultiFragmentation()
|
|---|
| 47 | {
|
|---|
| 48 | throw G4HadronicException(__FILE__, __LINE__, "G4StatMF::copy_constructor meant to not be accessable");
|
|---|
| 49 | }
|
|---|
| 50 |
|
|---|
| 51 |
|
|---|
| 52 | // Operators
|
|---|
| 53 |
|
|---|
| 54 | G4StatMF & G4StatMF::operator=(const G4StatMF & )
|
|---|
| 55 | {
|
|---|
| 56 | throw G4HadronicException(__FILE__, __LINE__, "G4StatMF::operator= meant to not be accessable");
|
|---|
| 57 | return *this;
|
|---|
| 58 | }
|
|---|
| 59 |
|
|---|
| 60 |
|
|---|
| 61 | G4bool G4StatMF::operator==(const G4StatMF & )
|
|---|
| 62 | {
|
|---|
| 63 | throw G4HadronicException(__FILE__, __LINE__, "G4StatMF::operator== meant to not be accessable");
|
|---|
| 64 | return false;
|
|---|
| 65 | }
|
|---|
| 66 |
|
|---|
| 67 |
|
|---|
| 68 | G4bool G4StatMF::operator!=(const G4StatMF & )
|
|---|
| 69 | {
|
|---|
| 70 | throw G4HadronicException(__FILE__, __LINE__, "G4StatMF::operator!= meant to not be accessable");
|
|---|
| 71 | return true;
|
|---|
| 72 | }
|
|---|
| 73 |
|
|---|
| 74 |
|
|---|
| 75 |
|
|---|
| 76 |
|
|---|
| 77 |
|
|---|
| 78 | G4FragmentVector * G4StatMF::BreakItUp(const G4Fragment &theFragment)
|
|---|
| 79 | {
|
|---|
| 80 | // G4FragmentVector * theResult = new G4FragmentVector;
|
|---|
| 81 |
|
|---|
| 82 | if (theFragment.GetExcitationEnergy() <= 0.0) {
|
|---|
| 83 | G4FragmentVector * theResult = new G4FragmentVector;
|
|---|
| 84 | theResult->push_back(new G4Fragment(theFragment));
|
|---|
| 85 | return 0;
|
|---|
| 86 | }
|
|---|
| 87 |
|
|---|
| 88 |
|
|---|
| 89 | // Maximun average multiplicity: M_0 = 2.6 for A ~ 200
|
|---|
| 90 | // and M_0 = 3.3 for A <= 110
|
|---|
| 91 | G4double MaxAverageMultiplicity =
|
|---|
| 92 | G4StatMFParameters::GetMaxAverageMultiplicity(static_cast<G4int>(theFragment.GetA()));
|
|---|
| 93 |
|
|---|
| 94 |
|
|---|
| 95 | // We'll use two kinds of ensembles
|
|---|
| 96 | G4StatMFMicroCanonical * theMicrocanonicalEnsemble = 0;
|
|---|
| 97 | G4StatMFMacroCanonical * theMacrocanonicalEnsemble = 0;
|
|---|
| 98 |
|
|---|
| 99 |
|
|---|
| 100 | //-------------------------------------------------------
|
|---|
| 101 | // Direct simulation part (Microcanonical ensemble)
|
|---|
| 102 | //-------------------------------------------------------
|
|---|
| 103 |
|
|---|
| 104 | // Microcanonical ensemble initialization
|
|---|
| 105 | theMicrocanonicalEnsemble = new G4StatMFMicroCanonical(theFragment);
|
|---|
| 106 |
|
|---|
| 107 | G4int Iterations = 0;
|
|---|
| 108 | G4int IterationsLimit = 100000;
|
|---|
| 109 | G4double Temperature = 0.0;
|
|---|
| 110 |
|
|---|
| 111 | G4bool FirstTime = true;
|
|---|
| 112 | G4StatMFChannel * theChannel = 0;
|
|---|
| 113 |
|
|---|
| 114 | G4bool ChannelOk;
|
|---|
| 115 | do { // Try to de-excite as much as IterationLimit permits
|
|---|
| 116 | do {
|
|---|
| 117 |
|
|---|
| 118 | G4double theMeanMult = theMicrocanonicalEnsemble->GetMeanMultiplicity();
|
|---|
| 119 | if (theMeanMult <= MaxAverageMultiplicity) {
|
|---|
| 120 | // G4cout << "MICROCANONICAL" << G4endl;
|
|---|
| 121 | // Choose fragments atomic numbers and charges from direct simulation
|
|---|
| 122 | theChannel = theMicrocanonicalEnsemble->ChooseAandZ(theFragment);
|
|---|
| 123 | _theEnsemble = theMicrocanonicalEnsemble;
|
|---|
| 124 | } else {
|
|---|
| 125 | //-----------------------------------------------------
|
|---|
| 126 | // Non direct simulation part (Macrocanonical Ensemble)
|
|---|
| 127 | //-----------------------------------------------------
|
|---|
| 128 | if (FirstTime) {
|
|---|
| 129 | // Macrocanonical ensemble initialization
|
|---|
| 130 | theMacrocanonicalEnsemble = new G4StatMFMacroCanonical(theFragment);
|
|---|
| 131 | _theEnsemble = theMacrocanonicalEnsemble;
|
|---|
| 132 | FirstTime = false;
|
|---|
| 133 | }
|
|---|
| 134 | // G4cout << "MACROCANONICAL" << G4endl;
|
|---|
| 135 | // Select calculated fragment total multiplicity,
|
|---|
| 136 | // fragment atomic numbers and fragment charges.
|
|---|
| 137 | theChannel = theMacrocanonicalEnsemble->ChooseAandZ(theFragment);
|
|---|
| 138 | }
|
|---|
| 139 |
|
|---|
| 140 | ChannelOk = theChannel->CheckFragments();
|
|---|
| 141 | if (!ChannelOk) delete theChannel;
|
|---|
| 142 |
|
|---|
| 143 | } while (!ChannelOk);
|
|---|
| 144 |
|
|---|
| 145 |
|
|---|
| 146 | if (theChannel->GetMultiplicity() <= 1) {
|
|---|
| 147 | G4FragmentVector * theResult = new G4FragmentVector;
|
|---|
| 148 | theResult->push_back(new G4Fragment(theFragment));
|
|---|
| 149 | delete theMicrocanonicalEnsemble;
|
|---|
| 150 | if (theMacrocanonicalEnsemble != 0) delete theMacrocanonicalEnsemble;
|
|---|
| 151 | delete theChannel;
|
|---|
| 152 | return theResult;
|
|---|
| 153 | }
|
|---|
| 154 |
|
|---|
| 155 | //--------------------------------------
|
|---|
| 156 | // Second part of simulation procedure.
|
|---|
| 157 | //--------------------------------------
|
|---|
| 158 |
|
|---|
| 159 | // Find temperature of breaking channel.
|
|---|
| 160 | Temperature = _theEnsemble->GetMeanTemperature(); // Initial guess for Temperature
|
|---|
| 161 |
|
|---|
| 162 | if (FindTemperatureOfBreakingChannel(theFragment,theChannel,Temperature)) break;
|
|---|
| 163 |
|
|---|
| 164 | // Do not forget to delete this unusable channel, for which we failed to find the temperature,
|
|---|
| 165 | // otherwise for very proton-reach nuclei it would lead to memory leak due to large
|
|---|
| 166 | // number of iterations. N.B. "theChannel" is created in G4StatMFMacroCanonical::ChooseZ()
|
|---|
| 167 |
|
|---|
| 168 | // G4cout << " Iteration # " << Iterations << " Mean Temperature = " << Temperature << G4endl;
|
|---|
| 169 |
|
|---|
| 170 | delete theChannel;
|
|---|
| 171 |
|
|---|
| 172 | } while (Iterations++ < IterationsLimit );
|
|---|
| 173 |
|
|---|
| 174 |
|
|---|
| 175 |
|
|---|
| 176 | // If Iterations >= IterationsLimit means that we couldn't solve for temperature
|
|---|
| 177 | if (Iterations >= IterationsLimit)
|
|---|
| 178 | throw G4HadronicException(__FILE__, __LINE__, "G4StatMF::BreakItUp: Was not possible to solve for temperature of breaking channel");
|
|---|
| 179 |
|
|---|
| 180 |
|
|---|
| 181 | G4FragmentVector * theResult = theChannel->
|
|---|
| 182 | GetFragments(theFragment.GetA(),theFragment.GetZ(),Temperature);
|
|---|
| 183 |
|
|---|
| 184 |
|
|---|
| 185 |
|
|---|
| 186 | // ~~~~~~ Energy conservation Patch !!!!!!!!!!!!!!!!!!!!!!
|
|---|
| 187 | // Original nucleus 4-momentum in CM system
|
|---|
| 188 | G4LorentzVector InitialMomentum(theFragment.GetMomentum());
|
|---|
| 189 | InitialMomentum.boost(-InitialMomentum.boostVector());
|
|---|
| 190 | G4double ScaleFactor = 0.0;
|
|---|
| 191 | G4double SavedScaleFactor = 0.0;
|
|---|
| 192 | do {
|
|---|
| 193 | G4double FragmentsEnergy = 0.0;
|
|---|
| 194 | G4FragmentVector::iterator j;
|
|---|
| 195 | for (j = theResult->begin(); j != theResult->end(); j++)
|
|---|
| 196 | FragmentsEnergy += (*j)->GetMomentum().e();
|
|---|
| 197 | SavedScaleFactor = ScaleFactor;
|
|---|
| 198 | ScaleFactor = InitialMomentum.e()/FragmentsEnergy;
|
|---|
| 199 | G4ThreeVector ScaledMomentum(0.0,0.0,0.0);
|
|---|
| 200 | for (j = theResult->begin(); j != theResult->end(); j++) {
|
|---|
| 201 | ScaledMomentum = ScaleFactor * (*j)->GetMomentum().vect();
|
|---|
| 202 | G4double Mass = (*j)->GetMomentum().m();
|
|---|
| 203 | G4LorentzVector NewMomentum;
|
|---|
| 204 | NewMomentum.setVect(ScaledMomentum);
|
|---|
| 205 | NewMomentum.setE(std::sqrt(ScaledMomentum.mag2()+Mass*Mass));
|
|---|
| 206 | (*j)->SetMomentum(NewMomentum);
|
|---|
| 207 | }
|
|---|
| 208 | } while (ScaleFactor > 1.0+1.e-5 && std::abs(ScaleFactor-SavedScaleFactor)/ScaleFactor > 1.e-10);
|
|---|
| 209 | // ~~~~~~ End of patch !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|---|
| 210 |
|
|---|
| 211 | // Perform Lorentz boost
|
|---|
| 212 | G4FragmentVector::iterator i;
|
|---|
| 213 | for (i = theResult->begin(); i != theResult->end(); i++) {
|
|---|
| 214 | G4LorentzVector FourMom = (*i)->GetMomentum();
|
|---|
| 215 | FourMom.boost(theFragment.GetMomentum().boostVector());
|
|---|
| 216 | (*i)->SetMomentum(FourMom);
|
|---|
| 217 | #ifdef PRECOMPOUND_TEST
|
|---|
| 218 | (*i)->SetCreatorModel(G4String("G4StatMF"));
|
|---|
| 219 | #endif
|
|---|
| 220 | }
|
|---|
| 221 |
|
|---|
| 222 | // garbage collection
|
|---|
| 223 | delete theMicrocanonicalEnsemble;
|
|---|
| 224 | if (theMacrocanonicalEnsemble != 0) delete theMacrocanonicalEnsemble;
|
|---|
| 225 | delete theChannel;
|
|---|
| 226 |
|
|---|
| 227 | return theResult;
|
|---|
| 228 | }
|
|---|
| 229 |
|
|---|
| 230 |
|
|---|
| 231 | G4bool G4StatMF::FindTemperatureOfBreakingChannel(const G4Fragment & theFragment,
|
|---|
| 232 | const G4StatMFChannel * aChannel,
|
|---|
| 233 | G4double & Temperature)
|
|---|
| 234 | // This finds temperature of breaking channel.
|
|---|
| 235 | {
|
|---|
| 236 | G4double A = theFragment.GetA();
|
|---|
| 237 | G4double Z = theFragment.GetZ();
|
|---|
| 238 | G4double U = theFragment.GetExcitationEnergy();
|
|---|
| 239 |
|
|---|
| 240 | G4double T = std::max(Temperature,0.0012*MeV);
|
|---|
| 241 |
|
|---|
| 242 | G4double Ta = T;
|
|---|
| 243 | G4double Tb = T;
|
|---|
| 244 |
|
|---|
| 245 |
|
|---|
| 246 | G4double TotalEnergy = CalcEnergy(A,Z,aChannel,T);
|
|---|
| 247 |
|
|---|
| 248 | G4double Da = (U - TotalEnergy)/U;
|
|---|
| 249 | G4double Db = 0.0;
|
|---|
| 250 |
|
|---|
| 251 | // bracketing the solution
|
|---|
| 252 | if (Da == 0.0) {
|
|---|
| 253 | Temperature = T;
|
|---|
| 254 | return true;
|
|---|
| 255 | } else if (Da < 0.0) {
|
|---|
| 256 | do {
|
|---|
| 257 | Tb -= 0.5 * std::abs(Tb);
|
|---|
| 258 | T = Tb;
|
|---|
| 259 | if (Tb < 0.001*MeV) return false;
|
|---|
| 260 |
|
|---|
| 261 | TotalEnergy = CalcEnergy(A,Z,aChannel,T);
|
|---|
| 262 |
|
|---|
| 263 | Db = (U - TotalEnergy)/U;
|
|---|
| 264 | } while (Db < 0.0);
|
|---|
| 265 |
|
|---|
| 266 | } else {
|
|---|
| 267 | do {
|
|---|
| 268 | Tb += 0.5 * std::abs(Tb);
|
|---|
| 269 | T = Tb;
|
|---|
| 270 |
|
|---|
| 271 | TotalEnergy = CalcEnergy(A,Z,aChannel,T);
|
|---|
| 272 |
|
|---|
| 273 | Db = (U - TotalEnergy)/U;
|
|---|
| 274 | } while (Db > 0.0);
|
|---|
| 275 | }
|
|---|
| 276 |
|
|---|
| 277 | G4double eps = 1.0e-14 * std::abs(Tb-Ta);
|
|---|
| 278 | //G4double eps = 1.0e-3 ;
|
|---|
| 279 |
|
|---|
| 280 | // Start the bisection method
|
|---|
| 281 | for (G4int j = 0; j < 1000; j++) {
|
|---|
| 282 | G4double Tc = (Ta+Tb)/2.0;
|
|---|
| 283 | if (std::abs(Ta-Tc) <= eps) {
|
|---|
| 284 | Temperature = Tc;
|
|---|
| 285 | return true;
|
|---|
| 286 | }
|
|---|
| 287 |
|
|---|
| 288 | T = Tc;
|
|---|
| 289 |
|
|---|
| 290 | TotalEnergy = CalcEnergy(A,Z,aChannel,T);
|
|---|
| 291 |
|
|---|
| 292 | G4double Dc = (U - TotalEnergy)/U;
|
|---|
| 293 |
|
|---|
| 294 | if (Dc == 0.0) {
|
|---|
| 295 | Temperature = Tc;
|
|---|
| 296 | return true;
|
|---|
| 297 | }
|
|---|
| 298 |
|
|---|
| 299 | if (Da*Dc < 0.0) {
|
|---|
| 300 | Tb = Tc;
|
|---|
| 301 | Db = Dc;
|
|---|
| 302 | } else {
|
|---|
| 303 | Ta = Tc;
|
|---|
| 304 | Da = Dc;
|
|---|
| 305 | }
|
|---|
| 306 | }
|
|---|
| 307 |
|
|---|
| 308 | Temperature = (Ta+Tb)/2.0;
|
|---|
| 309 | return false;
|
|---|
| 310 | }
|
|---|
| 311 |
|
|---|
| 312 |
|
|---|
| 313 |
|
|---|
| 314 | G4double G4StatMF::CalcEnergy(const G4double A, const G4double Z, const G4StatMFChannel * aChannel,
|
|---|
| 315 | const G4double T)
|
|---|
| 316 | {
|
|---|
| 317 | G4double MassExcess0 = G4NucleiProperties::GetMassExcess(static_cast<G4int>(A),static_cast<G4int>(Z));
|
|---|
| 318 |
|
|---|
| 319 | G4double Coulomb = (3./5.)*(elm_coupling*Z*Z)*std::pow(1.0+G4StatMFParameters::GetKappaCoulomb(),1./3.)/
|
|---|
| 320 | (G4StatMFParameters::Getr0()*std::pow(A,1./3.));
|
|---|
| 321 |
|
|---|
| 322 | G4double ChannelEnergy = aChannel->GetFragmentsEnergy(T);
|
|---|
| 323 |
|
|---|
| 324 | return -MassExcess0 + Coulomb + ChannelEnergy;
|
|---|
| 325 |
|
|---|
| 326 | }
|
|---|
| 327 |
|
|---|
| 328 |
|
|---|
| 329 |
|
|---|