| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // $Id: G4StatMFChannel.cc,v 1.10 2008/11/19 14:33:31 vnivanch Exp $
|
|---|
| 28 | // GEANT4 tag $Name: geant4-09-03-cand-01 $
|
|---|
| 29 | //
|
|---|
| 30 | // Hadronic Process: Nuclear De-excitations
|
|---|
| 31 | // by V. Lara
|
|---|
| 32 | //
|
|---|
| 33 | // Modified:
|
|---|
| 34 | // 25.07.08 I.Pshenichnov (in collaboration with Alexander Botvina and Igor
|
|---|
| 35 | // Mishustin (FIAS, Frankfurt, INR, Moscow and Kurchatov Institute,
|
|---|
| 36 | // Moscow, pshenich@fias.uni-frankfurt.de) fixed semi-infinite loop
|
|---|
| 37 |
|
|---|
| 38 |
|
|---|
| 39 | #include "G4StatMFChannel.hh"
|
|---|
| 40 | #include "G4HadronicException.hh"
|
|---|
| 41 | #include <numeric>
|
|---|
| 42 |
|
|---|
| 43 | class SumCoulombEnergy : public std::binary_function<G4double,G4double,G4double>
|
|---|
| 44 | {
|
|---|
| 45 | public:
|
|---|
| 46 | SumCoulombEnergy() : total(0.0) {}
|
|---|
| 47 | G4double operator() (G4double& , G4StatMFFragment*& frag)
|
|---|
| 48 | {
|
|---|
| 49 | total += frag->GetCoulombEnergy();
|
|---|
| 50 | return total;
|
|---|
| 51 | }
|
|---|
| 52 |
|
|---|
| 53 | G4double GetTotal() { return total; }
|
|---|
| 54 | public:
|
|---|
| 55 | G4double total;
|
|---|
| 56 | };
|
|---|
| 57 |
|
|---|
| 58 |
|
|---|
| 59 |
|
|---|
| 60 |
|
|---|
| 61 |
|
|---|
| 62 | // Copy constructor
|
|---|
| 63 | G4StatMFChannel::G4StatMFChannel(const G4StatMFChannel & )
|
|---|
| 64 | {
|
|---|
| 65 | throw G4HadronicException(__FILE__, __LINE__, "G4StatMFChannel::copy_constructor meant to not be accessable");
|
|---|
| 66 | }
|
|---|
| 67 |
|
|---|
| 68 | // Operators
|
|---|
| 69 |
|
|---|
| 70 | G4StatMFChannel & G4StatMFChannel::
|
|---|
| 71 | operator=(const G4StatMFChannel & )
|
|---|
| 72 | {
|
|---|
| 73 | throw G4HadronicException(__FILE__, __LINE__, "G4StatMFChannel::operator= meant to not be accessable");
|
|---|
| 74 | return *this;
|
|---|
| 75 | }
|
|---|
| 76 |
|
|---|
| 77 |
|
|---|
| 78 | G4bool G4StatMFChannel::operator==(const G4StatMFChannel & ) const
|
|---|
| 79 | {
|
|---|
| 80 | // throw G4HadronicException(__FILE__, __LINE__, "G4StatMFChannel::operator== meant to not be accessable");
|
|---|
| 81 | return false;
|
|---|
| 82 | }
|
|---|
| 83 |
|
|---|
| 84 |
|
|---|
| 85 | G4bool G4StatMFChannel::operator!=(const G4StatMFChannel & ) const
|
|---|
| 86 | {
|
|---|
| 87 | // throw G4HadronicException(__FILE__, __LINE__, "G4StatMFChannel::operator!= meant to not be accessable");
|
|---|
| 88 | return true;
|
|---|
| 89 | }
|
|---|
| 90 |
|
|---|
| 91 |
|
|---|
| 92 | G4bool G4StatMFChannel::CheckFragments(void)
|
|---|
| 93 | {
|
|---|
| 94 | std::deque<G4StatMFFragment*>::iterator i;
|
|---|
| 95 | for (i = _theFragments.begin();
|
|---|
| 96 | i != _theFragments.end(); ++i)
|
|---|
| 97 | {
|
|---|
| 98 | G4int A = static_cast<G4int>((*i)->GetA());
|
|---|
| 99 | G4int Z = static_cast<G4int>((*i)->GetZ());
|
|---|
| 100 | if ( (A > 1 && (Z > A || Z <= 0)) || (A==1 && Z > A) || A <= 0 ) return false;
|
|---|
| 101 | }
|
|---|
| 102 |
|
|---|
| 103 | return true;
|
|---|
| 104 | }
|
|---|
| 105 |
|
|---|
| 106 |
|
|---|
| 107 |
|
|---|
| 108 |
|
|---|
| 109 | void G4StatMFChannel::CreateFragment(const G4double A, const G4double Z)
|
|---|
| 110 | // Create a new fragment.
|
|---|
| 111 | // Fragments are automatically sorted: first charged fragments,
|
|---|
| 112 | // then neutral ones.
|
|---|
| 113 | {
|
|---|
| 114 | if (Z <= 0.5) {
|
|---|
| 115 | _theFragments.push_back(new G4StatMFFragment(static_cast<G4int>(A),static_cast<G4int>(Z)));
|
|---|
| 116 | _NumOfNeutralFragments++;
|
|---|
| 117 | } else {
|
|---|
| 118 | _theFragments.push_front(new G4StatMFFragment(static_cast<G4int>(A),static_cast<G4int>(Z)));
|
|---|
| 119 | _NumOfChargedFragments++;
|
|---|
| 120 | }
|
|---|
| 121 |
|
|---|
| 122 | return;
|
|---|
| 123 | }
|
|---|
| 124 |
|
|---|
| 125 |
|
|---|
| 126 | G4double G4StatMFChannel::GetFragmentsCoulombEnergy(void)
|
|---|
| 127 | {
|
|---|
| 128 | G4double Coulomb = std::accumulate(_theFragments.begin(),_theFragments.end(),
|
|---|
| 129 | 0.0,SumCoulombEnergy());
|
|---|
| 130 | // G4double Coulomb = 0.0;
|
|---|
| 131 | // for (unsigned int i = 0;i < _theFragments.size(); i++)
|
|---|
| 132 | // Coulomb += _theFragments[i]->GetCoulombEnergy();
|
|---|
| 133 | return Coulomb;
|
|---|
| 134 | }
|
|---|
| 135 |
|
|---|
| 136 |
|
|---|
| 137 |
|
|---|
| 138 | G4double G4StatMFChannel::GetFragmentsEnergy(const G4double T) const
|
|---|
| 139 | {
|
|---|
| 140 | G4double Energy = 0.0;
|
|---|
| 141 |
|
|---|
| 142 | G4double TranslationalEnergy = (3./2.)*T*static_cast<G4double>(_theFragments.size());
|
|---|
| 143 |
|
|---|
| 144 | std::deque<G4StatMFFragment*>::const_iterator i;
|
|---|
| 145 | for (i = _theFragments.begin(); i != _theFragments.end(); ++i)
|
|---|
| 146 | {
|
|---|
| 147 | Energy += (*i)->GetEnergy(T);
|
|---|
| 148 | }
|
|---|
| 149 | return Energy + TranslationalEnergy;
|
|---|
| 150 | }
|
|---|
| 151 |
|
|---|
| 152 | G4FragmentVector * G4StatMFChannel::GetFragments(const G4double anA,
|
|---|
| 153 | const G4double anZ,
|
|---|
| 154 | const G4double T)
|
|---|
| 155 | //
|
|---|
| 156 | {
|
|---|
| 157 | // calculate momenta of charged fragments
|
|---|
| 158 | CoulombImpulse(anA,anZ,T);
|
|---|
| 159 |
|
|---|
| 160 | // calculate momenta of neutral fragments
|
|---|
| 161 | FragmentsMomenta(_NumOfNeutralFragments, _NumOfChargedFragments, T);
|
|---|
| 162 |
|
|---|
| 163 |
|
|---|
| 164 | G4FragmentVector * theResult = new G4FragmentVector;
|
|---|
| 165 | std::deque<G4StatMFFragment*>::iterator i;
|
|---|
| 166 | for (i = _theFragments.begin(); i != _theFragments.end(); ++i)
|
|---|
| 167 | theResult->push_back((*i)->GetFragment(T));
|
|---|
| 168 |
|
|---|
| 169 | return theResult;
|
|---|
| 170 |
|
|---|
| 171 | }
|
|---|
| 172 |
|
|---|
| 173 |
|
|---|
| 174 |
|
|---|
| 175 | void G4StatMFChannel::CoulombImpulse(const G4double anA, const G4double anZ, const G4double T)
|
|---|
| 176 | // Aafter breakup, fragments fly away under Coulomb field.
|
|---|
| 177 | // This method calculates asymptotic fragments momenta.
|
|---|
| 178 | {
|
|---|
| 179 | // First, we have to place the fragments inside of the original nucleus volume
|
|---|
| 180 | PlaceFragments(anA);
|
|---|
| 181 |
|
|---|
| 182 | // Second, we sample initial charged fragments momenta. There are
|
|---|
| 183 | // _NumOfChargedFragments charged fragments and they start at the begining
|
|---|
| 184 | // of the vector _theFragments (i.e. 0)
|
|---|
| 185 | FragmentsMomenta(_NumOfChargedFragments, 0, T);
|
|---|
| 186 |
|
|---|
| 187 | // Third, we have to figure out the asymptotic momenta of charged fragments
|
|---|
| 188 | // For taht we have to solve equations of motion for fragments
|
|---|
| 189 | SolveEqOfMotion(anA,anZ,T);
|
|---|
| 190 |
|
|---|
| 191 | return;
|
|---|
| 192 | }
|
|---|
| 193 |
|
|---|
| 194 |
|
|---|
| 195 |
|
|---|
| 196 | void G4StatMFChannel::PlaceFragments(const G4double anA)
|
|---|
| 197 | // This gives the position of fragments at the breakup instant.
|
|---|
| 198 | // Fragments positions are sampled inside prolongated ellipsoid.
|
|---|
| 199 | {
|
|---|
| 200 | const G4double R0 = G4StatMFParameters::Getr0();
|
|---|
| 201 | const G4double Rsys = 2.0*R0*std::pow(anA,1./3.);
|
|---|
| 202 |
|
|---|
| 203 | G4bool TooMuchIterations;
|
|---|
| 204 | do
|
|---|
| 205 | {
|
|---|
| 206 | TooMuchIterations = false;
|
|---|
| 207 |
|
|---|
| 208 | // Sample the position of the first fragment
|
|---|
| 209 | G4double R = (Rsys - R0*std::pow(_theFragments[0]->GetA(),1./3.))*
|
|---|
| 210 | std::pow(G4UniformRand(),1./3.);
|
|---|
| 211 | _theFragments[0]->SetPosition(IsotropicVector(R));
|
|---|
| 212 |
|
|---|
| 213 |
|
|---|
| 214 | // Sample the position of the remaining fragments
|
|---|
| 215 | G4bool ThereAreOverlaps = false;
|
|---|
| 216 | std::deque<G4StatMFFragment*>::iterator i;
|
|---|
| 217 | for (i = _theFragments.begin()+1; i != _theFragments.end(); ++i)
|
|---|
| 218 | {
|
|---|
| 219 | G4int counter = 0;
|
|---|
| 220 | do
|
|---|
| 221 | {
|
|---|
| 222 | R = (Rsys - R0*std::pow((*i)->GetA(),1./3.))*std::pow(G4UniformRand(),1./3.);
|
|---|
| 223 | (*i)->SetPosition(IsotropicVector(R));
|
|---|
| 224 |
|
|---|
| 225 | // Check that there are not overlapping fragments
|
|---|
| 226 | std::deque<G4StatMFFragment*>::iterator j;
|
|---|
| 227 | for (j = _theFragments.begin(); j != i; ++j)
|
|---|
| 228 | {
|
|---|
| 229 | G4ThreeVector FragToFragVector = (*i)->GetPosition() - (*j)->GetPosition();
|
|---|
| 230 | G4double Rmin = R0*(std::pow((*i)->GetA(),1./3.) +
|
|---|
| 231 | std::pow((*j)->GetA(),1./3));
|
|---|
| 232 | if ( (ThereAreOverlaps = (FragToFragVector.mag2() < Rmin*Rmin)) ) break;
|
|---|
| 233 | }
|
|---|
| 234 | counter++;
|
|---|
| 235 | } while (ThereAreOverlaps && counter < 1000);
|
|---|
| 236 |
|
|---|
| 237 | if (counter >= 1000)
|
|---|
| 238 | {
|
|---|
| 239 | TooMuchIterations = true;
|
|---|
| 240 | break;
|
|---|
| 241 | }
|
|---|
| 242 | }
|
|---|
| 243 | } while (TooMuchIterations);
|
|---|
| 244 |
|
|---|
| 245 | return;
|
|---|
| 246 | }
|
|---|
| 247 |
|
|---|
| 248 |
|
|---|
| 249 | void G4StatMFChannel::FragmentsMomenta(const G4int NF, const G4int idx,
|
|---|
| 250 | const G4double T)
|
|---|
| 251 | // Calculate fragments momenta at the breakup instant
|
|---|
| 252 | // Fragment kinetic energies are calculated according to the
|
|---|
| 253 | // Boltzmann distribution at given temperature.
|
|---|
| 254 | // NF is number of fragments
|
|---|
| 255 | // idx is index of first fragment
|
|---|
| 256 | {
|
|---|
| 257 | G4double KinE = (3./2.)*T*static_cast<G4double>(NF);
|
|---|
| 258 |
|
|---|
| 259 | G4ThreeVector p;
|
|---|
| 260 |
|
|---|
| 261 | if (NF <= 0) return;
|
|---|
| 262 | else if (NF == 1)
|
|---|
| 263 | {
|
|---|
| 264 | // We have only one fragment to deal with
|
|---|
| 265 | p = IsotropicVector(std::sqrt(2.0*_theFragments[idx]->GetNuclearMass()*KinE));
|
|---|
| 266 | _theFragments[idx]->SetMomentum(p);
|
|---|
| 267 | }
|
|---|
| 268 | else if (NF == 2)
|
|---|
| 269 | {
|
|---|
| 270 | // We have only two fragment to deal with
|
|---|
| 271 | G4double M1 = _theFragments[idx]->GetNuclearMass();
|
|---|
| 272 | G4double M2 = _theFragments[idx+1]->GetNuclearMass();
|
|---|
| 273 | p = IsotropicVector(std::sqrt(2.0*KinE*(M1*M2)/(M1+M2)));
|
|---|
| 274 | _theFragments[idx]->SetMomentum(p);
|
|---|
| 275 | _theFragments[idx+1]->SetMomentum(-p);
|
|---|
| 276 | }
|
|---|
| 277 | else
|
|---|
| 278 | {
|
|---|
| 279 | // We have more than two fragments
|
|---|
| 280 | G4double AvailableE;
|
|---|
| 281 | G4int i1,i2;
|
|---|
| 282 | G4double SummedE;
|
|---|
| 283 | G4ThreeVector SummedP;
|
|---|
| 284 | do
|
|---|
| 285 | {
|
|---|
| 286 | // Fisrt sample momenta of NF-2 fragments
|
|---|
| 287 | // according to Boltzmann distribution
|
|---|
| 288 | AvailableE = 0.0;
|
|---|
| 289 | SummedE = 0.0;
|
|---|
| 290 | SummedP.setX(0.0);SummedP.setY(0.0);SummedP.setZ(0.0);
|
|---|
| 291 | for (G4int i = idx; i < idx+NF-2; i++)
|
|---|
| 292 | {
|
|---|
| 293 | G4double E;
|
|---|
| 294 | G4double RandE;
|
|---|
| 295 | G4double Boltzmann;
|
|---|
| 296 | do
|
|---|
| 297 | {
|
|---|
| 298 | E = 9.0*T*G4UniformRand();
|
|---|
| 299 | Boltzmann = std::sqrt(E)*std::exp(-E/T);
|
|---|
| 300 | RandE = std::sqrt(T/2.)*std::exp(-0.5)*G4UniformRand();
|
|---|
| 301 | }
|
|---|
| 302 | while (RandE > Boltzmann);
|
|---|
| 303 | p = IsotropicVector(std::sqrt(2.0*E*_theFragments[i]->GetNuclearMass()));
|
|---|
| 304 | _theFragments[i]->SetMomentum(p);
|
|---|
| 305 | SummedE += E;
|
|---|
| 306 | SummedP += p;
|
|---|
| 307 | }
|
|---|
| 308 | // Calculate momenta of last two fragments in such a way
|
|---|
| 309 | // that constraints are satisfied
|
|---|
| 310 | i1 = idx+NF-2; // before last fragment index
|
|---|
| 311 | i2 = idx+NF-1; // last fragment index
|
|---|
| 312 | p = -SummedP;
|
|---|
| 313 | AvailableE = KinE - SummedE;
|
|---|
| 314 | // Available Kinetic Energy should be shared between two last fragments
|
|---|
| 315 | }
|
|---|
| 316 | while (AvailableE <= p.mag2()/(2.0*(_theFragments[i1]->GetNuclearMass()+
|
|---|
| 317 | _theFragments[i2]->GetNuclearMass())));
|
|---|
| 318 |
|
|---|
| 319 | G4double H = 1.0 + _theFragments[i2]->GetNuclearMass()/_theFragments[i1]->GetNuclearMass();
|
|---|
| 320 | G4double CTM12 = H*(1.0 - 2.0*_theFragments[i2]->GetNuclearMass()*AvailableE/p.mag2());
|
|---|
| 321 | G4double CosTheta1;
|
|---|
| 322 | G4double Sign;
|
|---|
| 323 |
|
|---|
| 324 | if (CTM12 > 0.9999) {CosTheta1 = 1.;}
|
|---|
| 325 | else {
|
|---|
| 326 | do
|
|---|
| 327 | {
|
|---|
| 328 | do
|
|---|
| 329 | {
|
|---|
| 330 | CosTheta1 = 1.0 - 2.0*G4UniformRand();
|
|---|
| 331 | }
|
|---|
| 332 | while (CosTheta1*CosTheta1 < CTM12);
|
|---|
| 333 | }
|
|---|
| 334 | while (CTM12 >= 0.0 && CosTheta1 < 0.0);
|
|---|
| 335 | }
|
|---|
| 336 |
|
|---|
| 337 | if (CTM12 < 0.0) Sign = 1.0;
|
|---|
| 338 | else if (G4UniformRand() <= 0.5) Sign = -1.0;
|
|---|
| 339 | else Sign = 1.0;
|
|---|
| 340 |
|
|---|
| 341 |
|
|---|
| 342 | G4double P1 = (p.mag()*CosTheta1+Sign*std::sqrt(p.mag2()*(CosTheta1*CosTheta1-CTM12)))/H;
|
|---|
| 343 | G4double P2 = std::sqrt(P1*P1+p.mag2() - 2.0*P1*p.mag()*CosTheta1);
|
|---|
| 344 | G4double Phi = twopi*G4UniformRand();
|
|---|
| 345 | G4double SinTheta1 = std::sqrt(1.0 - CosTheta1*CosTheta1);
|
|---|
| 346 | G4double CosPhi1 = std::cos(Phi);
|
|---|
| 347 | G4double SinPhi1 = std::sin(Phi);
|
|---|
| 348 | G4double CosPhi2 = -CosPhi1;
|
|---|
| 349 | G4double SinPhi2 = -SinPhi1;
|
|---|
| 350 | G4double CosTheta2 = (p.mag2() + P2*P2 - P1*P1)/(2.0*p.mag()*P2);
|
|---|
| 351 | G4double SinTheta2 = 0.0;
|
|---|
| 352 | if (CosTheta2 > -1.0 && CosTheta2 < 1.0) SinTheta2 = std::sqrt(1.0 - CosTheta2*CosTheta2);
|
|---|
| 353 |
|
|---|
| 354 | G4ThreeVector p1(P1*SinTheta1*CosPhi1,P1*SinTheta1*SinPhi1,P1*CosTheta1);
|
|---|
| 355 | G4ThreeVector p2(P2*SinTheta2*CosPhi2,P2*SinTheta2*SinPhi2,P2*CosTheta2);
|
|---|
| 356 | G4ThreeVector b(1.0,0.0,0.0);
|
|---|
| 357 |
|
|---|
| 358 | p1 = RotateMomentum(p,b,p1);
|
|---|
| 359 | p2 = RotateMomentum(p,b,p2);
|
|---|
| 360 |
|
|---|
| 361 | SummedP += p1 + p2;
|
|---|
| 362 | SummedE += p1.mag2()/(2.0*_theFragments[i1]->GetNuclearMass()) +
|
|---|
| 363 | p2.mag2()/(2.0*_theFragments[i2]->GetNuclearMass());
|
|---|
| 364 |
|
|---|
| 365 | _theFragments[i1]->SetMomentum(p1);
|
|---|
| 366 | _theFragments[i2]->SetMomentum(p2);
|
|---|
| 367 |
|
|---|
| 368 | }
|
|---|
| 369 |
|
|---|
| 370 | return;
|
|---|
| 371 | }
|
|---|
| 372 |
|
|---|
| 373 |
|
|---|
| 374 | void G4StatMFChannel::SolveEqOfMotion(const G4double anA, const G4double anZ, const G4double T)
|
|---|
| 375 | // This method will find a solution of Newton's equation of motion
|
|---|
| 376 | // for fragments in the self-consistent time-dependent Coulomb field
|
|---|
| 377 | {
|
|---|
| 378 | G4double CoulombEnergy = (3./5.)*(elm_coupling*anZ*anZ)*
|
|---|
| 379 | std::pow(1.0+G4StatMFParameters::GetKappaCoulomb(),1./3.)/
|
|---|
| 380 | (G4StatMFParameters::Getr0()*std::pow(anA,1./3.))
|
|---|
| 381 | - GetFragmentsCoulombEnergy();
|
|---|
| 382 | if (CoulombEnergy <= 0.0) return;
|
|---|
| 383 |
|
|---|
| 384 | G4int Iterations = 0;
|
|---|
| 385 | G4double TimeN = 0.0;
|
|---|
| 386 | G4double TimeS = 0.0;
|
|---|
| 387 | G4double DeltaTime = 10.0;
|
|---|
| 388 |
|
|---|
| 389 | G4ThreeVector * Pos = new G4ThreeVector[_NumOfChargedFragments];
|
|---|
| 390 | G4ThreeVector * Vel = new G4ThreeVector[_NumOfChargedFragments];
|
|---|
| 391 | G4ThreeVector * Accel = new G4ThreeVector[_NumOfChargedFragments];
|
|---|
| 392 |
|
|---|
| 393 | G4int i;
|
|---|
| 394 | for (i = 0; i < _NumOfChargedFragments; i++)
|
|---|
| 395 | {
|
|---|
| 396 | Vel[i] = (1.0/(_theFragments[i]->GetNuclearMass()))*
|
|---|
| 397 | _theFragments[i]->GetMomentum();
|
|---|
| 398 | Pos[i] = _theFragments[i]->GetPosition();
|
|---|
| 399 | }
|
|---|
| 400 |
|
|---|
| 401 | do
|
|---|
| 402 | {
|
|---|
| 403 |
|
|---|
| 404 | G4ThreeVector distance;
|
|---|
| 405 | G4ThreeVector force;
|
|---|
| 406 |
|
|---|
| 407 | for (i = 0; i < _NumOfChargedFragments; i++)
|
|---|
| 408 | {
|
|---|
| 409 | force.setX(0.0); force.setY(0.0); force.setZ(0.0);
|
|---|
| 410 | for (G4int j = 0; j < _NumOfChargedFragments; j++)
|
|---|
| 411 | {
|
|---|
| 412 | if (i != j)
|
|---|
| 413 | {
|
|---|
| 414 | distance = Pos[i] - Pos[j];
|
|---|
| 415 | force += (elm_coupling*(_theFragments[i]->GetZ()*_theFragments[j]->GetZ())/
|
|---|
| 416 | (distance.mag2()*distance.mag()))*distance;
|
|---|
| 417 | }
|
|---|
| 418 | }
|
|---|
| 419 | Accel[i] = (1./(_theFragments[i]->GetNuclearMass()))*force;
|
|---|
| 420 | }
|
|---|
| 421 |
|
|---|
| 422 | TimeN = TimeS + DeltaTime;
|
|---|
| 423 |
|
|---|
| 424 | G4ThreeVector SavedVel;
|
|---|
| 425 | for ( i = 0; i < _NumOfChargedFragments; i++)
|
|---|
| 426 | {
|
|---|
| 427 | SavedVel = Vel[i];
|
|---|
| 428 | Vel[i] += Accel[i]*(TimeN-TimeS);
|
|---|
| 429 | Pos[i] += (SavedVel+Vel[i])*(TimeN-TimeS)*0.5;
|
|---|
| 430 | }
|
|---|
| 431 |
|
|---|
| 432 | // if (Iterations >= 50 && Iterations < 75) DeltaTime = 4.;
|
|---|
| 433 | // else if (Iterations >= 75) DeltaTime = 10.;
|
|---|
| 434 |
|
|---|
| 435 | TimeS = TimeN;
|
|---|
| 436 |
|
|---|
| 437 | }
|
|---|
| 438 | while (Iterations++ < 100);
|
|---|
| 439 |
|
|---|
| 440 | // Summed fragment kinetic energy
|
|---|
| 441 | G4double TotalKineticEnergy = 0.0;
|
|---|
| 442 | for (i = 0; i < _NumOfChargedFragments; i++)
|
|---|
| 443 | {
|
|---|
| 444 | TotalKineticEnergy += _theFragments[i]->GetNuclearMass()*
|
|---|
| 445 | 0.5*Vel[i].mag2();
|
|---|
| 446 | }
|
|---|
| 447 | // Scaling of fragment velocities
|
|---|
| 448 | G4double KineticEnergy = (3./2.)*static_cast<G4double>(_theFragments.size())*T;
|
|---|
| 449 | G4double Eta = ( CoulombEnergy + KineticEnergy ) / TotalKineticEnergy;
|
|---|
| 450 | for (i = 0; i < _NumOfChargedFragments; i++)
|
|---|
| 451 | {
|
|---|
| 452 | Vel[i] *= Eta;
|
|---|
| 453 | }
|
|---|
| 454 |
|
|---|
| 455 | // Finally calculate fragments momenta
|
|---|
| 456 | for (i = 0; i < _NumOfChargedFragments; i++)
|
|---|
| 457 | {
|
|---|
| 458 | _theFragments[i]->SetMomentum(_theFragments[i]->GetNuclearMass()*Vel[i]);
|
|---|
| 459 | }
|
|---|
| 460 |
|
|---|
| 461 | // garbage collection
|
|---|
| 462 | delete [] Pos;
|
|---|
| 463 | delete [] Vel;
|
|---|
| 464 | delete [] Accel;
|
|---|
| 465 |
|
|---|
| 466 | return;
|
|---|
| 467 | }
|
|---|
| 468 |
|
|---|
| 469 |
|
|---|
| 470 |
|
|---|
| 471 | G4ThreeVector G4StatMFChannel::RotateMomentum(G4ThreeVector Pa,
|
|---|
| 472 | G4ThreeVector V, G4ThreeVector P)
|
|---|
| 473 | // Rotates a 3-vector P to close momentum triangle Pa + V + P = 0
|
|---|
| 474 | {
|
|---|
| 475 | G4ThreeVector U = Pa.unit();
|
|---|
| 476 |
|
|---|
| 477 | G4double Alpha1 = U * V;
|
|---|
| 478 |
|
|---|
| 479 | G4double Alpha2 = std::sqrt(V.mag2() - Alpha1*Alpha1);
|
|---|
| 480 |
|
|---|
| 481 | G4ThreeVector N = (1./Alpha2)*U.cross(V);
|
|---|
| 482 |
|
|---|
| 483 | G4ThreeVector RotatedMomentum(
|
|---|
| 484 | ( (V.x() - Alpha1*U.x())/Alpha2 ) * P.x() + N.x() * P.y() + U.x() * P.z(),
|
|---|
| 485 | ( (V.y() - Alpha1*U.y())/Alpha2 ) * P.x() + N.y() * P.y() + U.y() * P.z(),
|
|---|
| 486 | ( (V.z() - Alpha1*U.z())/Alpha2 ) * P.x() + N.z() * P.y() + U.z() * P.z()
|
|---|
| 487 | );
|
|---|
| 488 | return RotatedMomentum;
|
|---|
| 489 | }
|
|---|
| 490 |
|
|---|
| 491 |
|
|---|
| 492 |
|
|---|
| 493 |
|
|---|
| 494 |
|
|---|
| 495 | G4ThreeVector G4StatMFChannel::IsotropicVector(const G4double Magnitude)
|
|---|
| 496 | // Samples a isotropic random vector with a magnitud given by Magnitude.
|
|---|
| 497 | // By default Magnitude = 1
|
|---|
| 498 | {
|
|---|
| 499 | G4double CosTheta = 1.0 - 2.0*G4UniformRand();
|
|---|
| 500 | G4double SinTheta = std::sqrt(1.0 - CosTheta*CosTheta);
|
|---|
| 501 | G4double Phi = twopi*G4UniformRand();
|
|---|
| 502 | G4ThreeVector Vector(Magnitude*std::cos(Phi)*SinTheta,
|
|---|
| 503 | Magnitude*std::cos(Phi)*CosTheta,
|
|---|
| 504 | Magnitude*std::sin(Phi));
|
|---|
| 505 | return Vector;
|
|---|
| 506 | }
|
|---|