// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: G4StatMFFragment.cc,v 1.7 2008/07/25 11:20:47 vnivanch Exp $ // GEANT4 tag $Name: geant4-09-02-ref-02 $ // // Hadronic Process: Nuclear De-excitations // by V. Lara #include "G4StatMFFragment.hh" #include "G4HadronicException.hh" // Copy constructor G4StatMFFragment::G4StatMFFragment(const G4StatMFFragment & ) { throw G4HadronicException(__FILE__, __LINE__, "G4StatMFFragment::copy_constructor meant to not be accessable"); } // Operators G4StatMFFragment & G4StatMFFragment:: operator=(const G4StatMFFragment & ) { throw G4HadronicException(__FILE__, __LINE__, "G4StatMFFragment::operator= meant to not be accessable"); return *this; } G4bool G4StatMFFragment::operator==(const G4StatMFFragment & ) const { // throw G4HadronicException(__FILE__, __LINE__, "G4StatMFFragment::operator== meant to not be accessable"); return false; } G4bool G4StatMFFragment::operator!=(const G4StatMFFragment & ) const { // throw G4HadronicException(__FILE__, __LINE__, "G4StatMFFragment::operator!= meant to not be accessable"); return true; } G4double G4StatMFFragment::GetCoulombEnergy(void) const { if (theZ <= 0.1) return 0.0; G4double Coulomb = (3./5.)*(elm_coupling*theZ*theZ)* std::pow(1.0+G4StatMFParameters::GetKappaCoulomb(),1./3.)/ (G4StatMFParameters::Getr0()*std::pow(theA,1./3.)); return Coulomb; } G4double G4StatMFFragment::GetEnergy(const G4double T) const { if (theA < 1 || theZ < 0 || theZ > theA) { G4cerr << "G4StatMFFragment::GetEnergy: A = " << theA << ", Z = " << theZ << G4endl; throw G4HadronicException(__FILE__, __LINE__, "G4StatMFFragment::GetEnergy: Wrong values for A and Z!"); } G4double BulkEnergy = G4NucleiProperties::GetMassExcess(static_cast(theA), static_cast(theZ)); if (theA < 4) return BulkEnergy - GetCoulombEnergy(); G4double SurfaceEnergy; if (G4StatMFParameters::DBetaDT(T) == 0.0) SurfaceEnergy = 0.0; else SurfaceEnergy = (5./2.)*std::pow(theA,2.0/3.0)*T*T* G4StatMFParameters::GetBeta0()/ (G4StatMFParameters::GetCriticalTemp()* G4StatMFParameters::GetCriticalTemp()); G4double ExchangeEnergy = theA*T*T/GetInvLevelDensity(); if (theA != 4) ExchangeEnergy += SurfaceEnergy; return BulkEnergy + ExchangeEnergy - GetCoulombEnergy(); } G4double G4StatMFFragment::GetInvLevelDensity(void) const { // Calculate Inverse Density Level // Epsilon0*(1 + 3 /(Af - 1)) if (theA == 1) return 0.0; else return G4StatMFParameters::GetEpsilon0()*(1.0+3.0/(theA - 1.0)); } G4Fragment * G4StatMFFragment::GetFragment(const G4double T) { G4double U = CalcExcitationEnergy(T); G4double M = GetNuclearMass(); G4LorentzVector FourMomentum(_momentum,std::sqrt(_momentum.mag2()+(M+U)*(M+U))); G4Fragment * theFragment = new G4Fragment(static_cast(theA),static_cast(theZ),FourMomentum); return theFragment; } G4double G4StatMFFragment::CalcExcitationEnergy(const G4double T) { if (theA <= 3) return 0.0; G4double BulkEnergy = theA*T*T/GetInvLevelDensity(); // if it is an alpha particle: done if (theA == 4) return BulkEnergy; // Term connected with surface energy G4double SurfaceEnergy = 0.0; if (std::abs(G4StatMFParameters::DBetaDT(T)) > 1.0e-20) // SurfaceEnergy = (5./2.)*std::pow(theA,2.0/3.0)*T*T*G4StatMFParameters::GetBeta0()/ // (G4StatMFParameters::GetCriticalTemp()*G4StatMFParameters::GetCriticalTemp()); SurfaceEnergy = (5./2.)*std::pow(theA,2.0/3.0)*(G4StatMFParameters::Beta(T) - T*G4StatMFParameters::DBetaDT(T) - G4StatMFParameters::GetBeta0()); return BulkEnergy + SurfaceEnergy; }