// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: G4StatMFMacroBiNucleon.cc,v 1.7 2008/10/24 22:56:42 dennis Exp $ // GEANT4 tag $Name: geant4-09-03 $ // // Hadronic Process: Nuclear De-excitations // by V. Lara #include "G4StatMFMacroBiNucleon.hh" // Operators G4StatMFMacroBiNucleon & G4StatMFMacroBiNucleon:: operator=(const G4StatMFMacroBiNucleon & ) { throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroBiNucleon::operator= meant to not be accessable"); return *this; } G4bool G4StatMFMacroBiNucleon::operator==(const G4StatMFMacroBiNucleon & ) const { throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroBiNucleon::operator== meant to not be accessable"); return false; } G4bool G4StatMFMacroBiNucleon::operator!=(const G4StatMFMacroBiNucleon & ) const { throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroBiNucleon::operator!= meant to not be accessable"); return true; } G4double G4StatMFMacroBiNucleon::CalcMeanMultiplicity(const G4double FreeVol, const G4double mu, const G4double nu, const G4double T) { const G4double ThermalWaveLenght = 16.15*fermi/std::sqrt(T); const G4double lambda3 = ThermalWaveLenght*ThermalWaveLenght*ThermalWaveLenght; const G4double degeneracy = 3.0; const G4double Coulomb = (3./5.)*(elm_coupling/G4StatMFParameters::Getr0())* (1.0 - 1.0/std::pow(1.0+G4StatMFParameters::GetKappaCoulomb(),1./3.)); const G4double BindingE = G4NucleiProperties::GetBindingEnergy(theA,1); //old value was 2.796*MeV G4double exponent = (BindingE + theA*(mu+nu*theZARatio) - Coulomb*theZARatio*theZARatio*std::pow(G4double(theA),5./3.))/T; // To avoid numerical problems if (exponent < -700.0) exponent = -700.0; else if (exponent > 700.0) exponent = 700.0; _MeanMultiplicity = (degeneracy*FreeVol*static_cast(theA)*std::sqrt(static_cast(theA))/lambda3)* std::exp(exponent); return _MeanMultiplicity; } G4double G4StatMFMacroBiNucleon::CalcEnergy(const G4double T) { const G4double Coulomb = (3./5.)*(elm_coupling/G4StatMFParameters::Getr0())* (1.0 - 1.0/std::pow(1.0+G4StatMFParameters::GetKappaCoulomb(),1./3.)); _Energy = -G4NucleiProperties::GetBindingEnergy(theA,1) + Coulomb * theZARatio * theZARatio * std::pow(G4double(theA),5./3.) + (3./2.) * T; return _Energy; } G4double G4StatMFMacroBiNucleon::CalcEntropy(const G4double T, const G4double FreeVol) { const G4double ThermalWaveLenght = 16.15*fermi/std::sqrt(T); const G4double lambda3 = ThermalWaveLenght*ThermalWaveLenght*ThermalWaveLenght; G4double Entropy = 0.0; if (_MeanMultiplicity > 0.0) // Is this formula correct? Entropy = _MeanMultiplicity*(5./2.+ std::log(3.0*static_cast(theA)* std::sqrt(static_cast(theA))*FreeVol/ (lambda3*_MeanMultiplicity))); return Entropy; }