// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: G4StatMFMacroChemicalPotential.cc,v 1.6 2008/07/25 11:20:47 vnivanch Exp $ // GEANT4 tag $Name: geant4-09-03-cand-01 $ // // Hadronic Process: Nuclear De-excitations // by V. Lara #include "G4StatMFMacroChemicalPotential.hh" // operators definitions G4StatMFMacroChemicalPotential & G4StatMFMacroChemicalPotential::operator=(const G4StatMFMacroChemicalPotential & ) { throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroChemicalPotential::operator= meant to not be accessable"); return *this; } G4bool G4StatMFMacroChemicalPotential::operator==(const G4StatMFMacroChemicalPotential & ) const { throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroChemicalPotential::operator== meant to not be accessable"); return false; } G4bool G4StatMFMacroChemicalPotential::operator!=(const G4StatMFMacroChemicalPotential & ) const { throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroChemicalPotential::operator!= meant to not be accessable"); return true; } G4double G4StatMFMacroChemicalPotential::CalcChemicalPotentialNu(void) // Calculate Chemical potential \nu { G4double CP = ((3./5.)*elm_coupling/G4StatMFParameters::Getr0())* (1.0-1.0/std::pow(1.0+G4StatMFParameters::GetKappaCoulomb(),1.0/3.0)); // Initial value for _ChemPotentialNu _ChemPotentialNu = (theZ/theA)*(8.0*G4StatMFParameters::GetGamma0()+2.0*CP*std::pow(theA,2./3.)) - 4.0*G4StatMFParameters::GetGamma0(); G4double ChemPa = _ChemPotentialNu; G4double ChemPb = 0.5*_ChemPotentialNu; G4double fChemPa = this->operator()(ChemPa); G4double fChemPb = this->operator()(ChemPb); if (fChemPa*fChemPb > 0.0) { // bracketing the solution if (fChemPa < 0.0) { do { ChemPb -= 1.5*std::abs(ChemPb-ChemPa); fChemPb = this->operator()(ChemPb); } while (fChemPb < 0.0); } else { do { ChemPb += 1.5*std::abs(ChemPb-ChemPa); fChemPb = this->operator()(ChemPb); } while (fChemPb > 0.0); } } G4Solver * theSolver = new G4Solver(100,1.e-4); theSolver->SetIntervalLimits(ChemPa,ChemPb); // if (!theSolver->Crenshaw(*this)) if (!theSolver->Brent(*this)){ G4cerr <<"G4StatMFMacroChemicalPotential:"<<" ChemPa="<GetRoot(); delete theSolver; return _ChemPotentialNu; } G4double G4StatMFMacroChemicalPotential::CalcMeanZ(const G4double nu) { std::vector::iterator i; for (i= _theClusters->begin()+1; i != _theClusters->end(); ++i) { (*i)->CalcZARatio(nu); } CalcChemicalPotentialMu(nu); // This is important, the Z over A ratio for proton and neutron depends on the // chemical potential Mu, while for the first guess for Chemical potential mu // some values of Z over A ratio. This is the reason for that. (*_theClusters->begin())->CalcZARatio(nu); G4double MeanZ = 0.0; G4int n = 1; for (i = _theClusters->begin(); i != _theClusters->end(); ++i) { MeanZ += static_cast(n++) * (*i)->GetZARatio() * (*i)->GetMeanMultiplicity(); } return MeanZ; } void G4StatMFMacroChemicalPotential::CalcChemicalPotentialMu(const G4double nu) // Calculate Chemical potential \mu // For that is necesary to calculate mean multiplicities { G4StatMFMacroMultiplicity * theMultip = new G4StatMFMacroMultiplicity(theA,_Kappa,_MeanTemperature,nu,_theClusters); _ChemPotentialMu = theMultip->CalcChemicalPotentialMu(); _MeanMultiplicity = theMultip->GetMeanMultiplicity(); delete theMultip; return; }