// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: G4StatMFMacroMultiNucleon.cc,v 1.7 2008/11/19 14:33:31 vnivanch Exp $ // GEANT4 tag $Name: geant4-09-04-beta-01 $ // // Hadronic Process: Nuclear De-excitations // by V. Lara // // Modified: // 25.07.08 I.Pshenichnov (in collaboration with Alexander Botvina and Igor // Mishustin (FIAS, Frankfurt, INR, Moscow and Kurchatov Institute, // Moscow, pshenich@fias.uni-frankfurt.de) fixed computation of the // symmetry energy #include "G4StatMFMacroMultiNucleon.hh" // Default constructor G4StatMFMacroMultiNucleon:: G4StatMFMacroMultiNucleon() : G4VStatMFMacroCluster(0) // Beacuse the def. constr. of base class is private { throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroMultiNucleon::default_constructor meant to not be accessable"); } // Copy constructor G4StatMFMacroMultiNucleon:: G4StatMFMacroMultiNucleon(const G4StatMFMacroMultiNucleon & ) : G4VStatMFMacroCluster(0) // Beacuse the def. constr. of base class is private { throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroMultiNucleon::copy_constructor meant to not be accessable"); } // Operators G4StatMFMacroMultiNucleon & G4StatMFMacroMultiNucleon:: operator=(const G4StatMFMacroMultiNucleon & ) { throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroMultiNucleon::operator= meant to not be accessable"); return *this; } G4bool G4StatMFMacroMultiNucleon::operator==(const G4StatMFMacroMultiNucleon & ) const { throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroMultiNucleon::operator== meant to not be accessable"); return false; } G4bool G4StatMFMacroMultiNucleon::operator!=(const G4StatMFMacroMultiNucleon & ) const { throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroMultiNucleon::operator!= meant to not be accessable"); return true; } G4double G4StatMFMacroMultiNucleon::CalcMeanMultiplicity(const G4double FreeVol, const G4double mu, const G4double nu, const G4double T) { const G4double ThermalWaveLenght = 16.15*fermi/std::sqrt(T); const G4double lambda3 = ThermalWaveLenght*ThermalWaveLenght*ThermalWaveLenght; const G4double A23 = std::pow(static_cast(theA),2./3.); const G4double Coulomb = (3./5.)*(elm_coupling/G4StatMFParameters::Getr0())* (1.0 - 1.0/std::pow(1.0+G4StatMFParameters::GetKappaCoulomb(),1./3.)); G4double exponent = (mu + nu*theZARatio+ G4StatMFParameters::GetE0() + T*T/_InvLevelDensity - G4StatMFParameters::GetGamma0()*(1.0 - 2.0*theZARatio)* (1.0 - 2.0*theZARatio))*theA - G4StatMFParameters::Beta(T)*A23 - Coulomb*theZARatio*theZARatio*A23*theA; exponent /= T; if (exponent > 30.0) exponent = 30.0; _MeanMultiplicity = std::max((FreeVol * static_cast(theA) * std::sqrt(static_cast(theA))/lambda3) * std::exp(exponent),1.0e-30); return _MeanMultiplicity; } G4double G4StatMFMacroMultiNucleon::CalcZARatio(const G4double nu) { const G4double Coulomb = (3./5.)*(elm_coupling/G4StatMFParameters::Getr0())* (1.0 - 1.0/std::pow(1.0+G4StatMFParameters::GetKappaCoulomb(),1./3.)); G4double den = 8.0*G4StatMFParameters::GetGamma0()+2.0*Coulomb*std::pow(static_cast(theA),2./3.); G4double num = 4.0*G4StatMFParameters::GetGamma0()+nu; return theZARatio = num/den; } G4double G4StatMFMacroMultiNucleon::CalcEnergy(const G4double T) { const G4double Coulomb = (3./5.)*(elm_coupling/G4StatMFParameters::Getr0())* (1.0 - 1.0/std::pow(1.0+G4StatMFParameters::GetKappaCoulomb(),1./3.)); const G4double A23 = std::pow(static_cast(theA),2./3.); // Volume term G4double EVol = static_cast(theA) * (T*T/_InvLevelDensity - G4StatMFParameters::GetE0()); // Symmetry term G4double ESym = static_cast(theA) * G4StatMFParameters::GetGamma0() *(1. - 2.* theZARatio) * (1. - 2.* theZARatio); // Surface term G4double ESurf = A23*(G4StatMFParameters::Beta(T) - T*G4StatMFParameters::DBetaDT(T)); // Coulomb term G4double ECoul = Coulomb*A23*static_cast(theA)*theZARatio*theZARatio; // Translational term G4double ETrans = (3./2.)*T; return _Energy = EVol + ESurf + ECoul + ETrans + ESym; } G4double G4StatMFMacroMultiNucleon::CalcEntropy(const G4double T, const G4double FreeVol) { const G4double ThermalWaveLenght = 16.15*fermi/std::sqrt(T); const G4double lambda3 = ThermalWaveLenght*ThermalWaveLenght*ThermalWaveLenght; G4double Entropy = 0.0; if (_MeanMultiplicity > 0.0) { // Volume term G4double SV = 2.0*static_cast(theA)*T/_InvLevelDensity; // Surface term G4double SS = -G4StatMFParameters::DBetaDT(T)*std::pow(static_cast(theA),2./3.); // Translational term G4double ST = (5./2.)+std::log(FreeVol * std::sqrt(static_cast(theA)) * static_cast(theA)/(lambda3*_MeanMultiplicity)); Entropy = _MeanMultiplicity*(SV + SS + ST); } return Entropy; }