| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // $Id: G4StatMFMacroTemperature.cc,v 1.7 2008/11/19 14:33:31 vnivanch Exp $
|
|---|
| 28 | // GEANT4 tag $Name: geant4-09-03-cand-01 $
|
|---|
| 29 | //
|
|---|
| 30 | // Hadronic Process: Nuclear De-excitations
|
|---|
| 31 | // by V. Lara
|
|---|
| 32 | //
|
|---|
| 33 | // Modified:
|
|---|
| 34 | // 25.07.08 I.Pshenichnov (in collaboration with Alexander Botvina and Igor
|
|---|
| 35 | // Mishustin (FIAS, Frankfurt, INR, Moscow and Kurchatov Institute,
|
|---|
| 36 | // Moscow, pshenich@fias.uni-frankfurt.de) make algorithm closer to
|
|---|
| 37 | // original MF model
|
|---|
| 38 |
|
|---|
| 39 | #include "G4StatMFMacroTemperature.hh"
|
|---|
| 40 |
|
|---|
| 41 | // operators definitions
|
|---|
| 42 | G4StatMFMacroTemperature &
|
|---|
| 43 | G4StatMFMacroTemperature::operator=(const G4StatMFMacroTemperature & )
|
|---|
| 44 | {
|
|---|
| 45 | throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroTemperature::operator= meant to not be accessable");
|
|---|
| 46 | return *this;
|
|---|
| 47 | }
|
|---|
| 48 |
|
|---|
| 49 | G4bool G4StatMFMacroTemperature::operator==(const G4StatMFMacroTemperature & ) const
|
|---|
| 50 | {
|
|---|
| 51 | throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroTemperature::operator== meant to not be accessable");
|
|---|
| 52 | return false;
|
|---|
| 53 | }
|
|---|
| 54 |
|
|---|
| 55 |
|
|---|
| 56 | G4bool G4StatMFMacroTemperature::operator!=(const G4StatMFMacroTemperature & ) const
|
|---|
| 57 | {
|
|---|
| 58 | throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroTemperature::operator!= meant to not be accessable");
|
|---|
| 59 | return true;
|
|---|
| 60 | }
|
|---|
| 61 |
|
|---|
| 62 |
|
|---|
| 63 |
|
|---|
| 64 |
|
|---|
| 65 | G4double G4StatMFMacroTemperature::CalcTemperature(void)
|
|---|
| 66 | {
|
|---|
| 67 | // Inital guess for the interval of the ensemble temperature values
|
|---|
| 68 | G4double Ta = 0.5;
|
|---|
| 69 | G4double Tb = std::max(std::sqrt(_ExEnergy/(theA*0.12)),0.01*MeV);
|
|---|
| 70 |
|
|---|
| 71 | G4double fTa = this->operator()(Ta);
|
|---|
| 72 | G4double fTb = this->operator()(Tb);
|
|---|
| 73 |
|
|---|
| 74 | // Bracketing the solution
|
|---|
| 75 | // T should be greater than 0.
|
|---|
| 76 | // The interval is [Ta,Tb]
|
|---|
| 77 | // We start with a value for Ta = 0.5 MeV
|
|---|
| 78 | // it should be enough to have fTa > 0 If it isn't
|
|---|
| 79 | // the case, we decrease Ta. But carefully, because
|
|---|
| 80 | // fTa growes very fast when Ta is near 0 and we could have
|
|---|
| 81 | // an overflow.
|
|---|
| 82 |
|
|---|
| 83 | G4int iterations = 0;
|
|---|
| 84 | while (fTa < 0.0 && iterations++ < 10) {
|
|---|
| 85 | Ta -= 0.5*Ta;
|
|---|
| 86 | fTa = this->operator()(Ta);
|
|---|
| 87 | }
|
|---|
| 88 | // Usually, fTb will be less than 0, but if it is not the case:
|
|---|
| 89 | iterations = 0;
|
|---|
| 90 | while (fTa*fTb > 0.0 && iterations++ < 10) {
|
|---|
| 91 | Tb += 2.*std::abs(Tb-Ta);
|
|---|
| 92 | fTb = this->operator()(Tb);
|
|---|
| 93 | }
|
|---|
| 94 |
|
|---|
| 95 | if (fTa*fTb > 0.0) {
|
|---|
| 96 | G4cerr <<"G4StatMFMacroTemperature:"<<" Ta="<<Ta<<" Tb="<<Tb<< G4endl;
|
|---|
| 97 | G4cerr <<"G4StatMFMacroTemperature:"<<" fTa="<<fTa<<" fTb="<<fTb<< G4endl;
|
|---|
| 98 | throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroTemperature::CalcTemperature: I couldn't bracket the solution.");
|
|---|
| 99 | }
|
|---|
| 100 |
|
|---|
| 101 | G4Solver<G4StatMFMacroTemperature> * theSolver = new G4Solver<G4StatMFMacroTemperature>(100,1.e-4);
|
|---|
| 102 | theSolver->SetIntervalLimits(Ta,Tb);
|
|---|
| 103 | if (!theSolver->Crenshaw(*this)){
|
|---|
| 104 | G4cerr <<"G4StatMFMacroTemperature, Crenshaw method failed:"<<" Ta="<<Ta<<" Tb="<<Tb<< G4endl;
|
|---|
| 105 | G4cerr <<"G4StatMFMacroTemperature, Crenshaw method failed:"<<" fTa="<<fTa<<" fTb="<<fTb<< G4endl;
|
|---|
| 106 | }
|
|---|
| 107 | _MeanTemperature = theSolver->GetRoot();
|
|---|
| 108 | G4double FunctionValureAtRoot = this->operator()(_MeanTemperature);
|
|---|
| 109 | delete theSolver;
|
|---|
| 110 |
|
|---|
| 111 | // Verify if the root is found and it is indeed within the physical domain,
|
|---|
| 112 | // say, between 1 and 50 MeV, otherwise try Brent method:
|
|---|
| 113 | if (_MeanTemperature < 1. || _MeanTemperature > 50. || std::abs(FunctionValureAtRoot) > 5.e-2) {
|
|---|
| 114 | G4cout << "Crenshaw method failed; function = " << FunctionValureAtRoot << " solution? = " << _MeanTemperature << " MeV " << G4endl;
|
|---|
| 115 | G4Solver<G4StatMFMacroTemperature> * theSolverBrent = new G4Solver<G4StatMFMacroTemperature>(200,1.e-3);
|
|---|
| 116 | theSolverBrent->SetIntervalLimits(Ta,Tb);
|
|---|
| 117 | if (!theSolverBrent->Brent(*this)){
|
|---|
| 118 | G4cerr <<"G4StatMFMacroTemperature, Brent method failed:"<<" Ta="<<Ta<<" Tb="<<Tb<< G4endl;
|
|---|
| 119 | G4cerr <<"G4StatMFMacroTemperature, Brent method failed:"<<" fTa="<<fTa<<" fTb="<<fTb<< G4endl;
|
|---|
| 120 | throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroTemperature::CalcTemperature: I couldn't find the root with any method.");
|
|---|
| 121 | }
|
|---|
| 122 |
|
|---|
| 123 | _MeanTemperature = theSolverBrent->GetRoot();
|
|---|
| 124 | FunctionValureAtRoot = this->operator()(_MeanTemperature);
|
|---|
| 125 | delete theSolverBrent;
|
|---|
| 126 |
|
|---|
| 127 | if (_MeanTemperature < 1. || _MeanTemperature > 50. || std::abs(FunctionValureAtRoot) > 5.e-2) {
|
|---|
| 128 | G4cout << "Brent method failed; function = " << FunctionValureAtRoot << " solution? = " << _MeanTemperature << " MeV " << G4endl;
|
|---|
| 129 | throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroTemperature::CalcTemperature: I couldn't find the root with any method.");
|
|---|
| 130 | }
|
|---|
| 131 | }
|
|---|
| 132 |
|
|---|
| 133 | return _MeanTemperature;
|
|---|
| 134 | }
|
|---|
| 135 |
|
|---|
| 136 |
|
|---|
| 137 |
|
|---|
| 138 | G4double G4StatMFMacroTemperature::FragsExcitEnergy(const G4double T)
|
|---|
| 139 | // Calculates excitation energy per nucleon and summed fragment multiplicity and entropy
|
|---|
| 140 | {
|
|---|
| 141 |
|
|---|
| 142 | // Model Parameters
|
|---|
| 143 | G4double R0 = G4StatMFParameters::Getr0()*std::pow(theA,1./3.);
|
|---|
| 144 | G4double R = R0*std::pow(1.0+G4StatMFParameters::GetKappaCoulomb(), 1./3.);
|
|---|
| 145 | G4double FreeVol = _Kappa*(4.*pi/3.)*R0*R0*R0;
|
|---|
| 146 |
|
|---|
| 147 |
|
|---|
| 148 | // Calculate Chemical potentials
|
|---|
| 149 | CalcChemicalPotentialNu(T);
|
|---|
| 150 |
|
|---|
| 151 |
|
|---|
| 152 | // Average total fragment energy
|
|---|
| 153 | G4double AverageEnergy = 0.0;
|
|---|
| 154 | std::vector<G4VStatMFMacroCluster*>::iterator i;
|
|---|
| 155 | for (i = _theClusters->begin(); i != _theClusters->end(); ++i)
|
|---|
| 156 | {
|
|---|
| 157 | AverageEnergy += (*i)->GetMeanMultiplicity() * (*i)->CalcEnergy(T);
|
|---|
| 158 | }
|
|---|
| 159 |
|
|---|
| 160 | // Add Coulomb energy
|
|---|
| 161 | AverageEnergy += (3./5.)*elm_coupling*theZ*theZ/R;
|
|---|
| 162 |
|
|---|
| 163 | // Calculate mean entropy
|
|---|
| 164 | _MeanEntropy = 0.0;
|
|---|
| 165 | for (i = _theClusters->begin(); i != _theClusters->end(); ++i)
|
|---|
| 166 | {
|
|---|
| 167 | _MeanEntropy += (*i)->CalcEntropy(T,FreeVol);
|
|---|
| 168 | }
|
|---|
| 169 |
|
|---|
| 170 | // Excitation energy per nucleon
|
|---|
| 171 | G4double FragsExcitEnergy = AverageEnergy - _FreeInternalE0;
|
|---|
| 172 |
|
|---|
| 173 | return FragsExcitEnergy;
|
|---|
| 174 |
|
|---|
| 175 | }
|
|---|
| 176 |
|
|---|
| 177 |
|
|---|
| 178 | void G4StatMFMacroTemperature::CalcChemicalPotentialNu(const G4double T)
|
|---|
| 179 | // Calculates the chemical potential \nu
|
|---|
| 180 |
|
|---|
| 181 | {
|
|---|
| 182 | G4StatMFMacroChemicalPotential * theChemPot = new
|
|---|
| 183 | G4StatMFMacroChemicalPotential(theA,theZ,_Kappa,T,_theClusters);
|
|---|
| 184 |
|
|---|
| 185 |
|
|---|
| 186 | _ChemPotentialNu = theChemPot->CalcChemicalPotentialNu();
|
|---|
| 187 | _ChemPotentialMu = theChemPot->GetChemicalPotentialMu();
|
|---|
| 188 | _MeanMultiplicity = theChemPot->GetMeanMultiplicity();
|
|---|
| 189 |
|
|---|
| 190 | delete theChemPot;
|
|---|
| 191 |
|
|---|
| 192 | return;
|
|---|
| 193 |
|
|---|
| 194 | }
|
|---|
| 195 |
|
|---|
| 196 |
|
|---|