| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // $Id: G4StatMFMicroCanonical.cc,v 1.7 2008/07/25 11:20:47 vnivanch Exp $
|
|---|
| 28 | // GEANT4 tag $Name: geant4-09-03-cand-01 $
|
|---|
| 29 | //
|
|---|
| 30 | // Hadronic Process: Nuclear De-excitations
|
|---|
| 31 | // by V. Lara
|
|---|
| 32 |
|
|---|
| 33 |
|
|---|
| 34 | #include "G4StatMFMicroCanonical.hh"
|
|---|
| 35 | #include "G4HadronicException.hh"
|
|---|
| 36 | #include <numeric>
|
|---|
| 37 |
|
|---|
| 38 |
|
|---|
| 39 | // Copy constructor
|
|---|
| 40 | G4StatMFMicroCanonical::G4StatMFMicroCanonical(const G4StatMFMicroCanonical &
|
|---|
| 41 | ) : G4VStatMFEnsemble()
|
|---|
| 42 | {
|
|---|
| 43 | throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMicroCanonical::copy_constructor meant to not be accessable");
|
|---|
| 44 | }
|
|---|
| 45 |
|
|---|
| 46 | // Operators
|
|---|
| 47 |
|
|---|
| 48 | G4StatMFMicroCanonical & G4StatMFMicroCanonical::
|
|---|
| 49 | operator=(const G4StatMFMicroCanonical & )
|
|---|
| 50 | {
|
|---|
| 51 | throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMicroCanonical::operator= meant to not be accessable");
|
|---|
| 52 | return *this;
|
|---|
| 53 | }
|
|---|
| 54 |
|
|---|
| 55 |
|
|---|
| 56 | G4bool G4StatMFMicroCanonical::operator==(const G4StatMFMicroCanonical & ) const
|
|---|
| 57 | {
|
|---|
| 58 | throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMicroCanonical::operator== meant to not be accessable");
|
|---|
| 59 | return false;
|
|---|
| 60 | }
|
|---|
| 61 |
|
|---|
| 62 |
|
|---|
| 63 | G4bool G4StatMFMicroCanonical::operator!=(const G4StatMFMicroCanonical & ) const
|
|---|
| 64 | {
|
|---|
| 65 | throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMicroCanonical::operator!= meant to not be accessable");
|
|---|
| 66 | return true;
|
|---|
| 67 | }
|
|---|
| 68 |
|
|---|
| 69 |
|
|---|
| 70 |
|
|---|
| 71 | // constructor
|
|---|
| 72 | G4StatMFMicroCanonical::G4StatMFMicroCanonical(G4Fragment const & theFragment)
|
|---|
| 73 | {
|
|---|
| 74 | // Perform class initialization
|
|---|
| 75 | Initialize(theFragment);
|
|---|
| 76 |
|
|---|
| 77 | }
|
|---|
| 78 |
|
|---|
| 79 |
|
|---|
| 80 | // destructor
|
|---|
| 81 | G4StatMFMicroCanonical::~G4StatMFMicroCanonical()
|
|---|
| 82 | {
|
|---|
| 83 | // garbage collection
|
|---|
| 84 | if (!_ThePartitionManagerVector.empty()) {
|
|---|
| 85 | std::for_each(_ThePartitionManagerVector.begin(),
|
|---|
| 86 | _ThePartitionManagerVector.end(),
|
|---|
| 87 | DeleteFragment());
|
|---|
| 88 | }
|
|---|
| 89 | }
|
|---|
| 90 |
|
|---|
| 91 |
|
|---|
| 92 |
|
|---|
| 93 | // Initialization method
|
|---|
| 94 |
|
|---|
| 95 | void G4StatMFMicroCanonical::Initialize(const G4Fragment & theFragment)
|
|---|
| 96 | {
|
|---|
| 97 |
|
|---|
| 98 | std::vector<G4StatMFMicroManager*>::iterator it;
|
|---|
| 99 |
|
|---|
| 100 | // Excitation Energy
|
|---|
| 101 | G4double U = theFragment.GetExcitationEnergy();
|
|---|
| 102 |
|
|---|
| 103 | G4double A = theFragment.GetA();
|
|---|
| 104 | G4double Z = theFragment.GetZ();
|
|---|
| 105 |
|
|---|
| 106 | // Configuration temperature
|
|---|
| 107 | G4double TConfiguration = std::sqrt(8.0*U/A);
|
|---|
| 108 |
|
|---|
| 109 | // Free internal energy at Temperature T = 0
|
|---|
| 110 | __FreeInternalE0 = A*(
|
|---|
| 111 | // Volume term (for T = 0)
|
|---|
| 112 | -G4StatMFParameters::GetE0() +
|
|---|
| 113 | // Symmetry term
|
|---|
| 114 | G4StatMFParameters::GetGamma0()*(1.0-2.0*Z/A)*(1.0-2.0*Z/A)
|
|---|
| 115 | ) +
|
|---|
| 116 | // Surface term (for T = 0)
|
|---|
| 117 | G4StatMFParameters::GetBeta0()*std::pow(A,2.0/3.0) +
|
|---|
| 118 | // Coulomb term
|
|---|
| 119 | elm_coupling*(3.0/5.0)*Z*Z/(G4StatMFParameters::Getr0()*std::pow(A,1.0/3.0));
|
|---|
| 120 |
|
|---|
| 121 | // Statistical weight
|
|---|
| 122 | G4double W = 0.0;
|
|---|
| 123 |
|
|---|
| 124 |
|
|---|
| 125 | // Mean breakup multiplicity
|
|---|
| 126 | __MeanMultiplicity = 0.0;
|
|---|
| 127 |
|
|---|
| 128 | // Mean channel temperature
|
|---|
| 129 | __MeanTemperature = 0.0;
|
|---|
| 130 |
|
|---|
| 131 | // Mean channel entropy
|
|---|
| 132 | __MeanEntropy = 0.0;
|
|---|
| 133 |
|
|---|
| 134 | // Calculate entropy of compound nucleus
|
|---|
| 135 | G4double SCompoundNucleus = CalcEntropyOfCompoundNucleus(theFragment,TConfiguration);
|
|---|
| 136 |
|
|---|
| 137 | // Statistical weight of compound nucleus
|
|---|
| 138 | _WCompoundNucleus = 1.0; // std::exp(SCompoundNucleus - SCompoundNucleus);
|
|---|
| 139 |
|
|---|
| 140 | W += _WCompoundNucleus;
|
|---|
| 141 |
|
|---|
| 142 |
|
|---|
| 143 |
|
|---|
| 144 | // Maximal fragment multiplicity allowed in direct simulation
|
|---|
| 145 | G4int MaxMult = G4StatMFMicroCanonical::MaxAllowedMultiplicity;
|
|---|
| 146 | if (A > 110) MaxMult -= 1;
|
|---|
| 147 |
|
|---|
| 148 |
|
|---|
| 149 |
|
|---|
| 150 | for (G4int m = 2; m <= MaxMult; m++) {
|
|---|
| 151 | G4StatMFMicroManager * aMicroManager =
|
|---|
| 152 | new G4StatMFMicroManager(theFragment,m,__FreeInternalE0,SCompoundNucleus);
|
|---|
| 153 | _ThePartitionManagerVector.push_back(aMicroManager);
|
|---|
| 154 | }
|
|---|
| 155 |
|
|---|
| 156 | // W is the total probability
|
|---|
| 157 | W = std::accumulate(_ThePartitionManagerVector.begin(),
|
|---|
| 158 | _ThePartitionManagerVector.end(),
|
|---|
| 159 | W,SumProbabilities());
|
|---|
| 160 |
|
|---|
| 161 | // Normalization of statistical weights
|
|---|
| 162 | for (it = _ThePartitionManagerVector.begin(); it != _ThePartitionManagerVector.end(); ++it)
|
|---|
| 163 | {
|
|---|
| 164 | (*it)->Normalize(W);
|
|---|
| 165 | }
|
|---|
| 166 |
|
|---|
| 167 | _WCompoundNucleus /= W;
|
|---|
| 168 |
|
|---|
| 169 | __MeanMultiplicity += 1.0 * _WCompoundNucleus;
|
|---|
| 170 | __MeanTemperature += TConfiguration * _WCompoundNucleus;
|
|---|
| 171 | __MeanEntropy += SCompoundNucleus * _WCompoundNucleus;
|
|---|
| 172 |
|
|---|
| 173 |
|
|---|
| 174 | for (it = _ThePartitionManagerVector.begin(); it != _ThePartitionManagerVector.end(); ++it)
|
|---|
| 175 | {
|
|---|
| 176 | __MeanMultiplicity += (*it)->GetMeanMultiplicity();
|
|---|
| 177 | __MeanTemperature += (*it)->GetMeanTemperature();
|
|---|
| 178 | __MeanEntropy += (*it)->GetMeanEntropy();
|
|---|
| 179 | }
|
|---|
| 180 |
|
|---|
| 181 | return;
|
|---|
| 182 | }
|
|---|
| 183 |
|
|---|
| 184 |
|
|---|
| 185 |
|
|---|
| 186 |
|
|---|
| 187 |
|
|---|
| 188 | G4double G4StatMFMicroCanonical::CalcFreeInternalEnergy(const G4Fragment & theFragment,
|
|---|
| 189 | const G4double T)
|
|---|
| 190 | {
|
|---|
| 191 | G4double A = theFragment.GetA();
|
|---|
| 192 | G4double Z = theFragment.GetZ();
|
|---|
| 193 | G4double A13 = std::pow(A,1.0/3.0);
|
|---|
| 194 |
|
|---|
| 195 | G4double InvLevelDensityPar = G4StatMFParameters::GetEpsilon0()*(1.0 + 3.0/(A-1.0));
|
|---|
| 196 |
|
|---|
| 197 | G4double VolumeTerm = (-G4StatMFParameters::GetE0()+T*T/InvLevelDensityPar)*A;
|
|---|
| 198 |
|
|---|
| 199 | G4double SymmetryTerm = G4StatMFParameters::GetGamma0()*(A - 2.0*Z)*(A - 2.0*Z)/A;
|
|---|
| 200 |
|
|---|
| 201 | G4double SurfaceTerm = (G4StatMFParameters::Beta(T)-T*G4StatMFParameters::DBetaDT(T))*A13*A13;
|
|---|
| 202 |
|
|---|
| 203 | G4double CoulombTerm = elm_coupling*(3.0/5.0)*Z*Z/(G4StatMFParameters::Getr0()*A13);
|
|---|
| 204 |
|
|---|
| 205 | return VolumeTerm + SymmetryTerm + SurfaceTerm + CoulombTerm;
|
|---|
| 206 | }
|
|---|
| 207 |
|
|---|
| 208 |
|
|---|
| 209 |
|
|---|
| 210 | G4double G4StatMFMicroCanonical::CalcEntropyOfCompoundNucleus(const G4Fragment & theFragment,G4double & TConf)
|
|---|
| 211 | // Calculates Temperature and Entropy of compound nucleus
|
|---|
| 212 | {
|
|---|
| 213 | const G4double A = theFragment.GetA();
|
|---|
| 214 | // const G4double Z = theFragment.GetZ();
|
|---|
| 215 | const G4double U = theFragment.GetExcitationEnergy();
|
|---|
| 216 | const G4double A13 = std::pow(A,1.0/3.0);
|
|---|
| 217 |
|
|---|
| 218 | G4double Ta = std::max(std::sqrt(U/(0.125*A)),0.0012*MeV);
|
|---|
| 219 | G4double Tb = Ta;
|
|---|
| 220 |
|
|---|
| 221 | G4double ECompoundNucleus = CalcFreeInternalEnergy(theFragment,Ta);
|
|---|
| 222 | G4double Da = (U+__FreeInternalE0-ECompoundNucleus)/U;
|
|---|
| 223 | G4double Db = 0.0;
|
|---|
| 224 |
|
|---|
| 225 |
|
|---|
| 226 | G4double InvLevelDensity = CalcInvLevelDensity(static_cast<G4int>(A));
|
|---|
| 227 |
|
|---|
| 228 |
|
|---|
| 229 | // bracketing the solution
|
|---|
| 230 | if (Da == 0.0) {
|
|---|
| 231 | TConf = Ta;
|
|---|
| 232 | return 2*Ta*A/InvLevelDensity - G4StatMFParameters::DBetaDT(Ta)*A13*A13;
|
|---|
| 233 | } else if (Da < 0.0) {
|
|---|
| 234 | do {
|
|---|
| 235 | Tb -= 0.5*Tb;
|
|---|
| 236 | ECompoundNucleus = CalcFreeInternalEnergy(theFragment,Tb);
|
|---|
| 237 | Db = (U+__FreeInternalE0-ECompoundNucleus)/U;
|
|---|
| 238 | } while (Db < 0.0);
|
|---|
| 239 | } else {
|
|---|
| 240 | do {
|
|---|
| 241 | Tb += 0.5*Tb;
|
|---|
| 242 | ECompoundNucleus = CalcFreeInternalEnergy(theFragment,Tb);
|
|---|
| 243 | Db = (U+__FreeInternalE0-ECompoundNucleus)/U;
|
|---|
| 244 | } while (Db > 0.0);
|
|---|
| 245 | }
|
|---|
| 246 |
|
|---|
| 247 |
|
|---|
| 248 | G4double eps = 1.0e-14 * std::abs(Tb-Ta);
|
|---|
| 249 |
|
|---|
| 250 | for (G4int i = 0; i < 1000; i++) {
|
|---|
| 251 | G4double Tc = (Ta+Tb)/2.0;
|
|---|
| 252 | if (std::abs(Ta-Tb) <= eps) {
|
|---|
| 253 | TConf = Tc;
|
|---|
| 254 | return 2*Tc*A/InvLevelDensity - G4StatMFParameters::DBetaDT(Tc)*A13*A13;
|
|---|
| 255 | }
|
|---|
| 256 | ECompoundNucleus = CalcFreeInternalEnergy(theFragment,Tc);
|
|---|
| 257 | G4double Dc = (U+__FreeInternalE0-ECompoundNucleus)/U;
|
|---|
| 258 |
|
|---|
| 259 | if (Dc == 0.0) {
|
|---|
| 260 | TConf = Tc;
|
|---|
| 261 | return 2*Tc*A/InvLevelDensity - G4StatMFParameters::DBetaDT(Tc)*A13*A13;
|
|---|
| 262 | }
|
|---|
| 263 |
|
|---|
| 264 | if (Da*Dc < 0.0) {
|
|---|
| 265 | Tb = Tc;
|
|---|
| 266 | Db = Dc;
|
|---|
| 267 | } else {
|
|---|
| 268 | Ta = Tc;
|
|---|
| 269 | Da = Dc;
|
|---|
| 270 | }
|
|---|
| 271 | }
|
|---|
| 272 |
|
|---|
| 273 | G4cerr <<
|
|---|
| 274 | "G4StatMFMicrocanoncal::CalcEntropyOfCompoundNucleus: I can't calculate the temperature"
|
|---|
| 275 | << G4endl;
|
|---|
| 276 |
|
|---|
| 277 | return 0.0;
|
|---|
| 278 | }
|
|---|
| 279 |
|
|---|
| 280 |
|
|---|
| 281 |
|
|---|
| 282 |
|
|---|
| 283 | G4StatMFChannel * G4StatMFMicroCanonical::ChooseAandZ(const G4Fragment & theFragment)
|
|---|
| 284 | // Choice of fragment atomic numbers and charges
|
|---|
| 285 | {
|
|---|
| 286 | // We choose a multiplicity (1,2,3,...) and then a channel
|
|---|
| 287 | G4double RandNumber = G4UniformRand();
|
|---|
| 288 |
|
|---|
| 289 | if (RandNumber < _WCompoundNucleus) {
|
|---|
| 290 |
|
|---|
| 291 | G4StatMFChannel * aChannel = new G4StatMFChannel;
|
|---|
| 292 | aChannel->CreateFragment(theFragment.GetA(),theFragment.GetZ());
|
|---|
| 293 | return aChannel;
|
|---|
| 294 |
|
|---|
| 295 | } else {
|
|---|
| 296 |
|
|---|
| 297 | G4double AccumWeight = _WCompoundNucleus;
|
|---|
| 298 | std::vector<G4StatMFMicroManager*>::iterator it;
|
|---|
| 299 | for (it = _ThePartitionManagerVector.begin(); it != _ThePartitionManagerVector.end(); ++it) {
|
|---|
| 300 | AccumWeight += (*it)->GetProbability();
|
|---|
| 301 | if (RandNumber < AccumWeight) {
|
|---|
| 302 | return (*it)->ChooseChannel(theFragment.GetA(),theFragment.GetZ(),__MeanTemperature);
|
|---|
| 303 | }
|
|---|
| 304 | }
|
|---|
| 305 | throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMicroCanonical::ChooseAandZ: wrong normalization!");
|
|---|
| 306 | }
|
|---|
| 307 |
|
|---|
| 308 | return 0;
|
|---|
| 309 | }
|
|---|
| 310 |
|
|---|
| 311 |
|
|---|
| 312 |
|
|---|
| 313 |
|
|---|
| 314 | G4double G4StatMFMicroCanonical::CalcInvLevelDensity(const G4int anA)
|
|---|
| 315 | {
|
|---|
| 316 | // Calculate Inverse Density Level
|
|---|
| 317 | // Epsilon0*(1 + 3 /(Af - 1))
|
|---|
| 318 | if (anA == 1) return 0.0;
|
|---|
| 319 | else return
|
|---|
| 320 | G4StatMFParameters::GetEpsilon0()*(1.0+3.0/(anA - 1.0));
|
|---|
| 321 | }
|
|---|