// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: G4StatMFMicroPartition.cc,v 1.8 2008/07/25 11:20:47 vnivanch Exp $ // GEANT4 tag $Name: geant4-09-03 $ // // by V. Lara // -------------------------------------------------------------------- #include "G4StatMFMicroPartition.hh" #include "G4HadronicException.hh" // Copy constructor G4StatMFMicroPartition::G4StatMFMicroPartition(const G4StatMFMicroPartition & ) { throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMicroPartition::copy_constructor meant to not be accessable"); } // Operators G4StatMFMicroPartition & G4StatMFMicroPartition:: operator=(const G4StatMFMicroPartition & ) { throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMicroPartition::operator= meant to not be accessable"); return *this; } G4bool G4StatMFMicroPartition::operator==(const G4StatMFMicroPartition & ) const { //throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMicroPartition::operator== meant to not be accessable"); return false; } G4bool G4StatMFMicroPartition::operator!=(const G4StatMFMicroPartition & ) const { //throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMicroPartition::operator!= meant to not be accessable"); return true; } void G4StatMFMicroPartition::CoulombFreeEnergy(const G4double anA) { // This Z independent factor in the Coulomb free energy G4double CoulombConstFactor = 1.0/std::pow(1.0+G4StatMFParameters::GetKappaCoulomb(),1.0/3.0); CoulombConstFactor = elm_coupling * (3./5.) * (1. - CoulombConstFactor)/G4StatMFParameters::Getr0(); // We use the aproximation Z_f ~ Z/A * A_f if (anA == 0 || anA == 1) { _theCoulombFreeEnergy.push_back(CoulombConstFactor*(theZ/theA)*(theZ/theA)); } else if (anA == 2 || anA == 3 || anA == 4) { // Z/A ~ 1/2 _theCoulombFreeEnergy.push_back(CoulombConstFactor*0.5*std::pow(anA,5./3.)); } else // anA > 4 { _theCoulombFreeEnergy.push_back(CoulombConstFactor*(theZ/theA)*(theZ/theA)* std::pow(anA,5./3.)); } } G4double G4StatMFMicroPartition::GetCoulombEnergy(void) { G4double CoulombFactor = 1.0/ std::pow(1.0+G4StatMFParameters::GetKappaCoulomb(),1.0/3.0); G4double CoulombEnergy = elm_coupling*(3./5.)*theZ*theZ*CoulombFactor/ (G4StatMFParameters::Getr0()*std::pow(static_cast(theA),1./3.)); for (unsigned int i = 0; i < _thePartition.size(); i++) CoulombEnergy += _theCoulombFreeEnergy[i] - elm_coupling*(3./5.)* (theZ/theA)*(theZ/theA)*std::pow(static_cast(_thePartition[i]),5./3.)/ G4StatMFParameters::Getr0(); return CoulombEnergy; } G4double G4StatMFMicroPartition::GetPartitionEnergy(const G4double T) { G4double CoulombFactor = 1.0/ std::pow(1.0+G4StatMFParameters::GetKappaCoulomb(),1.0/3.0); G4double PartitionEnergy = 0.0; // We use the aprox that Z_f ~ Z/A * A_f for (unsigned int i = 0; i < _thePartition.size(); i++) { if (_thePartition[i] == 0 || _thePartition[i] == 1) { PartitionEnergy += _theCoulombFreeEnergy[i]; } else if (_thePartition[i] == 2) { PartitionEnergy += -2.796 // Binding Energy of deuteron ?????? + _theCoulombFreeEnergy[i]; } else if (_thePartition[i] == 3) { PartitionEnergy += -9.224 // Binding Energy of trtion/He3 ?????? + _theCoulombFreeEnergy[i]; } else if (_thePartition[i] == 4) { PartitionEnergy += -30.11 // Binding Energy of ALPHA ?????? + _theCoulombFreeEnergy[i] + 4.*T*T/InvLevelDensity(4.); } else { PartitionEnergy += //Volume term (- G4StatMFParameters::GetE0() + T*T/InvLevelDensity(_thePartition[i])) *_thePartition[i] + // Symmetry term G4StatMFParameters::GetGamma0()* (1.0-2.0*theZ/theA)*(1.0-2.0*theZ/theA)*_thePartition[i] + // Surface term (G4StatMFParameters::Beta(T) - T*G4StatMFParameters::DBetaDT(T))* std::pow(static_cast(_thePartition[i]),2./3.) + // Coulomb term _theCoulombFreeEnergy[i]; } } PartitionEnergy += elm_coupling*(3./5.)*theZ*theZ*CoulombFactor/ (G4StatMFParameters::Getr0()*std::pow(static_cast(theA),1./3.)) + (3./2.)*T*(_thePartition.size()-1); return PartitionEnergy; } G4double G4StatMFMicroPartition::CalcPartitionTemperature(const G4double U, const G4double FreeInternalE0) { G4double PartitionEnergy = GetPartitionEnergy(0.0); // If this happens, T = 0 MeV, which means that probability for this // partition will be 0 if (std::abs(U + FreeInternalE0 - PartitionEnergy) < 0.003) return -1.0; // Calculate temperature by midpoint method // Bracketing the solution G4double Ta = 0.001; G4double Tb = std::max(std::sqrt(8.0*U/theA),0.0012*MeV); G4double Tmid = 0.0; G4double Da = (U + FreeInternalE0 - GetPartitionEnergy(Ta))/U; G4double Db = (U + FreeInternalE0 - GetPartitionEnergy(Tb))/U; G4int maxit = 0; while (Da*Db > 0.0 && maxit < 1000) { ++maxit; Tb += 0.5*Tb; Db = (U + FreeInternalE0 - GetPartitionEnergy(Tb))/U; } G4double eps = 1.0e-14*std::abs(Ta-Tb); for (G4int i = 0; i < 1000; i++) { Tmid = (Ta+Tb)/2.0; if (std::abs(Ta-Tb) <= eps) return Tmid; G4double Dmid = (U + FreeInternalE0 - GetPartitionEnergy(Tmid))/U; if (std::abs(Dmid) < 0.003) return Tmid; if (Da*Dmid < 0.0) { Tb = Tmid; Db = Dmid; } else { Ta = Tmid; Da = Dmid; } } // if we arrive here the temperature could not be calculated G4cerr << "G4StatMFMicroPartition::CalcPartitionTemperature: I can't calculate the temperature" << G4endl; // and set probability to 0 returning T < 0 return -1.0; } G4double G4StatMFMicroPartition::CalcPartitionProbability(const G4double U, const G4double FreeInternalE0, const G4double SCompound) { G4double T = CalcPartitionTemperature(U,FreeInternalE0); if ( T <= 0.0) return _Probability = 0.0; _Temperature = T; // Factorial of fragment multiplicity G4double Fact = 1.0; unsigned int i; for (i = 0; i < _thePartition.size() - 1; i++) { G4double f = 1.0; for (unsigned int ii = i+1; i< _thePartition.size(); i++) { if (_thePartition[i] == _thePartition[ii]) f++; } Fact *= f; } G4double ProbDegeneracy = 1.0; G4double ProbA32 = 1.0; for (i = 0; i < _thePartition.size(); i++) { ProbDegeneracy *= GetDegeneracyFactor(static_cast(_thePartition[i])); ProbA32 *= static_cast(_thePartition[i])* std::sqrt(static_cast(_thePartition[i])); } // Compute entropy G4double PartitionEntropy = 0.0; for (i = 0; i < _thePartition.size(); i++) { // interaction entropy for alpha if (_thePartition[i] == 4) { PartitionEntropy += 2.0*T*_thePartition[i]/InvLevelDensity(_thePartition[i]); } // interaction entropy for Af > 4 else if (_thePartition[i] > 4) { PartitionEntropy += 2.0*T*_thePartition[i]/InvLevelDensity(_thePartition[i]) - G4StatMFParameters::DBetaDT(T) * std::pow(static_cast(_thePartition[i]),2.0/3.0); } } // Thermal Wave Lenght = std::sqrt(2 pi hbar^2 / nucleon_mass T) G4double ThermalWaveLenght3 = 16.15*fermi/std::sqrt(T); ThermalWaveLenght3 = ThermalWaveLenght3*ThermalWaveLenght3*ThermalWaveLenght3; // Translational Entropy G4double kappa = (1. + elm_coupling*(std::pow(static_cast(_thePartition.size()),1./3.)-1.0) /(G4StatMFParameters::Getr0()*std::pow(static_cast(theA),1./3.))); kappa = kappa*kappa*kappa; kappa -= 1.; G4double V0 = (4./3.)*pi*theA*G4StatMFParameters::Getr0()*G4StatMFParameters::Getr0()* G4StatMFParameters::Getr0(); G4double FreeVolume = kappa*V0; G4double TranslationalS = std::max(0.0, std::log(ProbA32/Fact) + (_thePartition.size()-1.0)*std::log(FreeVolume/ThermalWaveLenght3) + 1.5*(_thePartition.size()-1.0) - (3./2.)*std::log(theA)); PartitionEntropy += std::log(ProbDegeneracy) + TranslationalS; _Entropy = PartitionEntropy; // And finally compute probability of fragment configuration G4double exponent = PartitionEntropy-SCompound; if (exponent > 700.0) exponent = 700.0; return _Probability = std::exp(exponent); } G4double G4StatMFMicroPartition::GetDegeneracyFactor(const G4int A) { // Degeneracy factors are statistical factors // DegeneracyFactor for nucleon is (2S_n + 1)(2I_n + 1) = 4 G4double DegFactor = 0; if (A > 4) DegFactor = 1.0; else if (A == 1) DegFactor = 4.0; // nucleon else if (A == 2) DegFactor = 3.0; // Deuteron else if (A == 3) DegFactor = 2.0+2.0; // Triton + He3 else if (A == 4) DegFactor = 1.0; // alpha return DegFactor; } G4StatMFChannel * G4StatMFMicroPartition::ChooseZ(const G4double A0, const G4double Z0, const G4double MeanT) // Gives fragments charges { std::vector FragmentsZ; G4int ZBalance = 0; do { G4double CC = G4StatMFParameters::GetGamma0()*8.0; G4int SumZ = 0; for (unsigned int i = 0; i < _thePartition.size(); i++) { G4double ZMean; G4double Af = _thePartition[i]; if (Af > 1.5 && Af < 4.5) ZMean = 0.5*Af; else ZMean = Af*Z0/A0; G4double ZDispersion = std::sqrt(Af * MeanT/CC); G4int Zf; do { Zf = static_cast(G4RandGauss::shoot(ZMean,ZDispersion)); } while (Zf < 0 || Zf > Af); FragmentsZ.push_back(Zf); SumZ += Zf; } ZBalance = static_cast(Z0) - SumZ; } while (std::abs(ZBalance) > 1.1); FragmentsZ[0] += ZBalance; G4StatMFChannel * theChannel = new G4StatMFChannel; for (unsigned int i = 0; i < _thePartition.size(); i++) { theChannel->CreateFragment(_thePartition[i],FragmentsZ[i]); } return theChannel; }