| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // $Id: G4StatMFMicroPartition.cc,v 1.8 2008/07/25 11:20:47 vnivanch Exp $
|
|---|
| 28 | // GEANT4 tag $Name: geant4-09-03-cand-01 $
|
|---|
| 29 | //
|
|---|
| 30 | // by V. Lara
|
|---|
| 31 | // --------------------------------------------------------------------
|
|---|
| 32 |
|
|---|
| 33 | #include "G4StatMFMicroPartition.hh"
|
|---|
| 34 | #include "G4HadronicException.hh"
|
|---|
| 35 |
|
|---|
| 36 |
|
|---|
| 37 | // Copy constructor
|
|---|
| 38 | G4StatMFMicroPartition::G4StatMFMicroPartition(const G4StatMFMicroPartition & )
|
|---|
| 39 | {
|
|---|
| 40 | throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMicroPartition::copy_constructor meant to not be accessable");
|
|---|
| 41 | }
|
|---|
| 42 |
|
|---|
| 43 | // Operators
|
|---|
| 44 |
|
|---|
| 45 | G4StatMFMicroPartition & G4StatMFMicroPartition::
|
|---|
| 46 | operator=(const G4StatMFMicroPartition & )
|
|---|
| 47 | {
|
|---|
| 48 | throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMicroPartition::operator= meant to not be accessable");
|
|---|
| 49 | return *this;
|
|---|
| 50 | }
|
|---|
| 51 |
|
|---|
| 52 |
|
|---|
| 53 | G4bool G4StatMFMicroPartition::operator==(const G4StatMFMicroPartition & ) const
|
|---|
| 54 | {
|
|---|
| 55 | //throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMicroPartition::operator== meant to not be accessable");
|
|---|
| 56 | return false;
|
|---|
| 57 | }
|
|---|
| 58 |
|
|---|
| 59 |
|
|---|
| 60 | G4bool G4StatMFMicroPartition::operator!=(const G4StatMFMicroPartition & ) const
|
|---|
| 61 | {
|
|---|
| 62 | //throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMicroPartition::operator!= meant to not be accessable");
|
|---|
| 63 | return true;
|
|---|
| 64 | }
|
|---|
| 65 |
|
|---|
| 66 |
|
|---|
| 67 |
|
|---|
| 68 | void G4StatMFMicroPartition::CoulombFreeEnergy(const G4double anA)
|
|---|
| 69 | {
|
|---|
| 70 | // This Z independent factor in the Coulomb free energy
|
|---|
| 71 | G4double CoulombConstFactor = 1.0/std::pow(1.0+G4StatMFParameters::GetKappaCoulomb(),1.0/3.0);
|
|---|
| 72 |
|
|---|
| 73 | CoulombConstFactor = elm_coupling * (3./5.) *
|
|---|
| 74 | (1. - CoulombConstFactor)/G4StatMFParameters::Getr0();
|
|---|
| 75 |
|
|---|
| 76 | // We use the aproximation Z_f ~ Z/A * A_f
|
|---|
| 77 |
|
|---|
| 78 | if (anA == 0 || anA == 1)
|
|---|
| 79 | {
|
|---|
| 80 | _theCoulombFreeEnergy.push_back(CoulombConstFactor*(theZ/theA)*(theZ/theA));
|
|---|
| 81 | }
|
|---|
| 82 | else if (anA == 2 || anA == 3 || anA == 4)
|
|---|
| 83 | {
|
|---|
| 84 | // Z/A ~ 1/2
|
|---|
| 85 | _theCoulombFreeEnergy.push_back(CoulombConstFactor*0.5*std::pow(anA,5./3.));
|
|---|
| 86 | }
|
|---|
| 87 | else // anA > 4
|
|---|
| 88 | {
|
|---|
| 89 | _theCoulombFreeEnergy.push_back(CoulombConstFactor*(theZ/theA)*(theZ/theA)*
|
|---|
| 90 | std::pow(anA,5./3.));
|
|---|
| 91 |
|
|---|
| 92 | }
|
|---|
| 93 | }
|
|---|
| 94 |
|
|---|
| 95 |
|
|---|
| 96 | G4double G4StatMFMicroPartition::GetCoulombEnergy(void)
|
|---|
| 97 | {
|
|---|
| 98 | G4double CoulombFactor = 1.0/
|
|---|
| 99 | std::pow(1.0+G4StatMFParameters::GetKappaCoulomb(),1.0/3.0);
|
|---|
| 100 |
|
|---|
| 101 | G4double CoulombEnergy = elm_coupling*(3./5.)*theZ*theZ*CoulombFactor/
|
|---|
| 102 | (G4StatMFParameters::Getr0()*std::pow(static_cast<G4double>(theA),1./3.));
|
|---|
| 103 |
|
|---|
| 104 | for (unsigned int i = 0; i < _thePartition.size(); i++)
|
|---|
| 105 | CoulombEnergy += _theCoulombFreeEnergy[i] - elm_coupling*(3./5.)*
|
|---|
| 106 | (theZ/theA)*(theZ/theA)*std::pow(static_cast<G4double>(_thePartition[i]),5./3.)/
|
|---|
| 107 | G4StatMFParameters::Getr0();
|
|---|
| 108 |
|
|---|
| 109 | return CoulombEnergy;
|
|---|
| 110 | }
|
|---|
| 111 |
|
|---|
| 112 | G4double G4StatMFMicroPartition::GetPartitionEnergy(const G4double T)
|
|---|
| 113 | {
|
|---|
| 114 | G4double CoulombFactor = 1.0/
|
|---|
| 115 | std::pow(1.0+G4StatMFParameters::GetKappaCoulomb(),1.0/3.0);
|
|---|
| 116 |
|
|---|
| 117 | G4double PartitionEnergy = 0.0;
|
|---|
| 118 |
|
|---|
| 119 |
|
|---|
| 120 | // We use the aprox that Z_f ~ Z/A * A_f
|
|---|
| 121 | for (unsigned int i = 0; i < _thePartition.size(); i++)
|
|---|
| 122 | {
|
|---|
| 123 | if (_thePartition[i] == 0 || _thePartition[i] == 1)
|
|---|
| 124 | {
|
|---|
| 125 | PartitionEnergy += _theCoulombFreeEnergy[i];
|
|---|
| 126 | }
|
|---|
| 127 | else if (_thePartition[i] == 2)
|
|---|
| 128 | {
|
|---|
| 129 | PartitionEnergy +=
|
|---|
| 130 | -2.796 // Binding Energy of deuteron ??????
|
|---|
| 131 | + _theCoulombFreeEnergy[i];
|
|---|
| 132 | }
|
|---|
| 133 | else if (_thePartition[i] == 3)
|
|---|
| 134 | {
|
|---|
| 135 | PartitionEnergy +=
|
|---|
| 136 | -9.224 // Binding Energy of trtion/He3 ??????
|
|---|
| 137 | + _theCoulombFreeEnergy[i];
|
|---|
| 138 | }
|
|---|
| 139 | else if (_thePartition[i] == 4)
|
|---|
| 140 | {
|
|---|
| 141 | PartitionEnergy +=
|
|---|
| 142 | -30.11 // Binding Energy of ALPHA ??????
|
|---|
| 143 | + _theCoulombFreeEnergy[i]
|
|---|
| 144 | + 4.*T*T/InvLevelDensity(4.);
|
|---|
| 145 | }
|
|---|
| 146 | else
|
|---|
| 147 | {
|
|---|
| 148 | PartitionEnergy +=
|
|---|
| 149 | //Volume term
|
|---|
| 150 | (- G4StatMFParameters::GetE0() +
|
|---|
| 151 | T*T/InvLevelDensity(_thePartition[i]))
|
|---|
| 152 | *_thePartition[i] +
|
|---|
| 153 |
|
|---|
| 154 | // Symmetry term
|
|---|
| 155 | G4StatMFParameters::GetGamma0()*
|
|---|
| 156 | (1.0-2.0*theZ/theA)*(1.0-2.0*theZ/theA)*_thePartition[i] +
|
|---|
| 157 |
|
|---|
| 158 | // Surface term
|
|---|
| 159 | (G4StatMFParameters::Beta(T) - T*G4StatMFParameters::DBetaDT(T))*
|
|---|
| 160 | std::pow(static_cast<G4double>(_thePartition[i]),2./3.) +
|
|---|
| 161 |
|
|---|
| 162 | // Coulomb term
|
|---|
| 163 | _theCoulombFreeEnergy[i];
|
|---|
| 164 | }
|
|---|
| 165 | }
|
|---|
| 166 |
|
|---|
| 167 | PartitionEnergy += elm_coupling*(3./5.)*theZ*theZ*CoulombFactor/
|
|---|
| 168 | (G4StatMFParameters::Getr0()*std::pow(static_cast<G4double>(theA),1./3.))
|
|---|
| 169 | + (3./2.)*T*(_thePartition.size()-1);
|
|---|
| 170 |
|
|---|
| 171 | return PartitionEnergy;
|
|---|
| 172 | }
|
|---|
| 173 |
|
|---|
| 174 |
|
|---|
| 175 | G4double G4StatMFMicroPartition::CalcPartitionTemperature(const G4double U,
|
|---|
| 176 | const G4double FreeInternalE0)
|
|---|
| 177 | {
|
|---|
| 178 | G4double PartitionEnergy = GetPartitionEnergy(0.0);
|
|---|
| 179 |
|
|---|
| 180 | // If this happens, T = 0 MeV, which means that probability for this
|
|---|
| 181 | // partition will be 0
|
|---|
| 182 | if (std::abs(U + FreeInternalE0 - PartitionEnergy) < 0.003) return -1.0;
|
|---|
| 183 |
|
|---|
| 184 | // Calculate temperature by midpoint method
|
|---|
| 185 |
|
|---|
| 186 | // Bracketing the solution
|
|---|
| 187 | G4double Ta = 0.001;
|
|---|
| 188 | G4double Tb = std::max(std::sqrt(8.0*U/theA),0.0012*MeV);
|
|---|
| 189 | G4double Tmid = 0.0;
|
|---|
| 190 |
|
|---|
| 191 | G4double Da = (U + FreeInternalE0 - GetPartitionEnergy(Ta))/U;
|
|---|
| 192 | G4double Db = (U + FreeInternalE0 - GetPartitionEnergy(Tb))/U;
|
|---|
| 193 |
|
|---|
| 194 | G4int maxit = 0;
|
|---|
| 195 | while (Da*Db > 0.0 && maxit < 1000)
|
|---|
| 196 | {
|
|---|
| 197 | ++maxit;
|
|---|
| 198 | Tb += 0.5*Tb;
|
|---|
| 199 | Db = (U + FreeInternalE0 - GetPartitionEnergy(Tb))/U;
|
|---|
| 200 | }
|
|---|
| 201 |
|
|---|
| 202 | G4double eps = 1.0e-14*std::abs(Ta-Tb);
|
|---|
| 203 |
|
|---|
| 204 | for (G4int i = 0; i < 1000; i++)
|
|---|
| 205 | {
|
|---|
| 206 | Tmid = (Ta+Tb)/2.0;
|
|---|
| 207 | if (std::abs(Ta-Tb) <= eps) return Tmid;
|
|---|
| 208 | G4double Dmid = (U + FreeInternalE0 - GetPartitionEnergy(Tmid))/U;
|
|---|
| 209 | if (std::abs(Dmid) < 0.003) return Tmid;
|
|---|
| 210 | if (Da*Dmid < 0.0)
|
|---|
| 211 | {
|
|---|
| 212 | Tb = Tmid;
|
|---|
| 213 | Db = Dmid;
|
|---|
| 214 | }
|
|---|
| 215 | else
|
|---|
| 216 | {
|
|---|
| 217 | Ta = Tmid;
|
|---|
| 218 | Da = Dmid;
|
|---|
| 219 | }
|
|---|
| 220 | }
|
|---|
| 221 | // if we arrive here the temperature could not be calculated
|
|---|
| 222 | G4cerr << "G4StatMFMicroPartition::CalcPartitionTemperature: I can't calculate the temperature"
|
|---|
| 223 | << G4endl;
|
|---|
| 224 | // and set probability to 0 returning T < 0
|
|---|
| 225 | return -1.0;
|
|---|
| 226 |
|
|---|
| 227 | }
|
|---|
| 228 |
|
|---|
| 229 |
|
|---|
| 230 | G4double G4StatMFMicroPartition::CalcPartitionProbability(const G4double U,
|
|---|
| 231 | const G4double FreeInternalE0,
|
|---|
| 232 | const G4double SCompound)
|
|---|
| 233 | {
|
|---|
| 234 | G4double T = CalcPartitionTemperature(U,FreeInternalE0);
|
|---|
| 235 | if ( T <= 0.0) return _Probability = 0.0;
|
|---|
| 236 | _Temperature = T;
|
|---|
| 237 |
|
|---|
| 238 |
|
|---|
| 239 | // Factorial of fragment multiplicity
|
|---|
| 240 | G4double Fact = 1.0;
|
|---|
| 241 | unsigned int i;
|
|---|
| 242 | for (i = 0; i < _thePartition.size() - 1; i++)
|
|---|
| 243 | {
|
|---|
| 244 | G4double f = 1.0;
|
|---|
| 245 | for (unsigned int ii = i+1; i< _thePartition.size(); i++)
|
|---|
| 246 | {
|
|---|
| 247 | if (_thePartition[i] == _thePartition[ii]) f++;
|
|---|
| 248 | }
|
|---|
| 249 | Fact *= f;
|
|---|
| 250 | }
|
|---|
| 251 |
|
|---|
| 252 | G4double ProbDegeneracy = 1.0;
|
|---|
| 253 | G4double ProbA32 = 1.0;
|
|---|
| 254 |
|
|---|
| 255 | for (i = 0; i < _thePartition.size(); i++)
|
|---|
| 256 | {
|
|---|
| 257 | ProbDegeneracy *= GetDegeneracyFactor(static_cast<G4int>(_thePartition[i]));
|
|---|
| 258 | ProbA32 *= static_cast<G4double>(_thePartition[i])*
|
|---|
| 259 | std::sqrt(static_cast<G4double>(_thePartition[i]));
|
|---|
| 260 | }
|
|---|
| 261 |
|
|---|
| 262 | // Compute entropy
|
|---|
| 263 | G4double PartitionEntropy = 0.0;
|
|---|
| 264 | for (i = 0; i < _thePartition.size(); i++)
|
|---|
| 265 | {
|
|---|
| 266 | // interaction entropy for alpha
|
|---|
| 267 | if (_thePartition[i] == 4)
|
|---|
| 268 | {
|
|---|
| 269 | PartitionEntropy +=
|
|---|
| 270 | 2.0*T*_thePartition[i]/InvLevelDensity(_thePartition[i]);
|
|---|
| 271 | }
|
|---|
| 272 | // interaction entropy for Af > 4
|
|---|
| 273 | else if (_thePartition[i] > 4)
|
|---|
| 274 | {
|
|---|
| 275 | PartitionEntropy +=
|
|---|
| 276 | 2.0*T*_thePartition[i]/InvLevelDensity(_thePartition[i])
|
|---|
| 277 | - G4StatMFParameters::DBetaDT(T)
|
|---|
| 278 | * std::pow(static_cast<G4double>(_thePartition[i]),2.0/3.0);
|
|---|
| 279 | }
|
|---|
| 280 | }
|
|---|
| 281 |
|
|---|
| 282 | // Thermal Wave Lenght = std::sqrt(2 pi hbar^2 / nucleon_mass T)
|
|---|
| 283 | G4double ThermalWaveLenght3 = 16.15*fermi/std::sqrt(T);
|
|---|
| 284 | ThermalWaveLenght3 = ThermalWaveLenght3*ThermalWaveLenght3*ThermalWaveLenght3;
|
|---|
| 285 |
|
|---|
| 286 | // Translational Entropy
|
|---|
| 287 | G4double kappa = (1. + elm_coupling*(std::pow(static_cast<G4double>(_thePartition.size()),1./3.)-1.0)
|
|---|
| 288 | /(G4StatMFParameters::Getr0()*std::pow(static_cast<G4double>(theA),1./3.)));
|
|---|
| 289 | kappa = kappa*kappa*kappa;
|
|---|
| 290 | kappa -= 1.;
|
|---|
| 291 | G4double V0 = (4./3.)*pi*theA*G4StatMFParameters::Getr0()*G4StatMFParameters::Getr0()*
|
|---|
| 292 | G4StatMFParameters::Getr0();
|
|---|
| 293 | G4double FreeVolume = kappa*V0;
|
|---|
| 294 | G4double TranslationalS = std::max(0.0, std::log(ProbA32/Fact) +
|
|---|
| 295 | (_thePartition.size()-1.0)*std::log(FreeVolume/ThermalWaveLenght3) +
|
|---|
| 296 | 1.5*(_thePartition.size()-1.0) - (3./2.)*std::log(theA));
|
|---|
| 297 |
|
|---|
| 298 | PartitionEntropy += std::log(ProbDegeneracy) + TranslationalS;
|
|---|
| 299 | _Entropy = PartitionEntropy;
|
|---|
| 300 |
|
|---|
| 301 | // And finally compute probability of fragment configuration
|
|---|
| 302 | G4double exponent = PartitionEntropy-SCompound;
|
|---|
| 303 | if (exponent > 700.0) exponent = 700.0;
|
|---|
| 304 | return _Probability = std::exp(exponent);
|
|---|
| 305 | }
|
|---|
| 306 |
|
|---|
| 307 |
|
|---|
| 308 |
|
|---|
| 309 | G4double G4StatMFMicroPartition::GetDegeneracyFactor(const G4int A)
|
|---|
| 310 | {
|
|---|
| 311 | // Degeneracy factors are statistical factors
|
|---|
| 312 | // DegeneracyFactor for nucleon is (2S_n + 1)(2I_n + 1) = 4
|
|---|
| 313 | G4double DegFactor = 0;
|
|---|
| 314 | if (A > 4) DegFactor = 1.0;
|
|---|
| 315 | else if (A == 1) DegFactor = 4.0; // nucleon
|
|---|
| 316 | else if (A == 2) DegFactor = 3.0; // Deuteron
|
|---|
| 317 | else if (A == 3) DegFactor = 2.0+2.0; // Triton + He3
|
|---|
| 318 | else if (A == 4) DegFactor = 1.0; // alpha
|
|---|
| 319 | return DegFactor;
|
|---|
| 320 | }
|
|---|
| 321 |
|
|---|
| 322 |
|
|---|
| 323 | G4StatMFChannel * G4StatMFMicroPartition::ChooseZ(const G4double A0, const G4double Z0, const G4double MeanT)
|
|---|
| 324 | // Gives fragments charges
|
|---|
| 325 | {
|
|---|
| 326 | std::vector<G4int> FragmentsZ;
|
|---|
| 327 |
|
|---|
| 328 | G4int ZBalance = 0;
|
|---|
| 329 | do
|
|---|
| 330 | {
|
|---|
| 331 | G4double CC = G4StatMFParameters::GetGamma0()*8.0;
|
|---|
| 332 | G4int SumZ = 0;
|
|---|
| 333 | for (unsigned int i = 0; i < _thePartition.size(); i++)
|
|---|
| 334 | {
|
|---|
| 335 | G4double ZMean;
|
|---|
| 336 | G4double Af = _thePartition[i];
|
|---|
| 337 | if (Af > 1.5 && Af < 4.5) ZMean = 0.5*Af;
|
|---|
| 338 | else ZMean = Af*Z0/A0;
|
|---|
| 339 | G4double ZDispersion = std::sqrt(Af * MeanT/CC);
|
|---|
| 340 | G4int Zf;
|
|---|
| 341 | do
|
|---|
| 342 | {
|
|---|
| 343 | Zf = static_cast<G4int>(G4RandGauss::shoot(ZMean,ZDispersion));
|
|---|
| 344 | }
|
|---|
| 345 | while (Zf < 0 || Zf > Af);
|
|---|
| 346 | FragmentsZ.push_back(Zf);
|
|---|
| 347 | SumZ += Zf;
|
|---|
| 348 | }
|
|---|
| 349 | ZBalance = static_cast<G4int>(Z0) - SumZ;
|
|---|
| 350 | }
|
|---|
| 351 | while (std::abs(ZBalance) > 1.1);
|
|---|
| 352 | FragmentsZ[0] += ZBalance;
|
|---|
| 353 |
|
|---|
| 354 | G4StatMFChannel * theChannel = new G4StatMFChannel;
|
|---|
| 355 | for (unsigned int i = 0; i < _thePartition.size(); i++)
|
|---|
| 356 | {
|
|---|
| 357 | theChannel->CreateFragment(_thePartition[i],FragmentsZ[i]);
|
|---|
| 358 | }
|
|---|
| 359 |
|
|---|
| 360 | return theChannel;
|
|---|
| 361 | }
|
|---|