// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // ------------------------------------------------------------------- // GEANT 4 class file // // CERN, Geneva, Switzerland // // File name: G4DiscreteGammaDeexcitation // // Author: Maria Grazia Pia (pia@genova.infn.it) // // Creation date: 23 October 1998 // // Modifications: // 8 March 2001, Fan Lei (flei@space.qinetiq.com) // Added the following as part if the IC implementation // void SetICM(G4bool hl) { _icm = hl; }; // void SetRDM(G4bool hl) { _rdm = hl; }; // void SetHL(G4double hl) { _max_hl = hl; }; // Changed in CreateTransition() from // return new G4DiscreteGammaTransition(*level); // To // return new G4DiscreteGammaTransition(*level,Z); // Added in CanDoTransition // if (level->HalfLife() > _max_hl && !_rdm ) canDo = false; // // ------------------------------------------------------------------- #include "G4DiscreteGammaDeexcitation.hh" #include "G4DiscreteGammaTransition.hh" #include "G4NuclearLevelManager.hh" #include "G4NuclearLevelStore.hh" #include "G4ios.hh" #include #include G4DiscreteGammaDeexcitation::G4DiscreteGammaDeexcitation(): _nucleusZ(0), _nucleusA(0), _max_hl(1e-6*second), _icm(false), _rdm(false), _levelManager(0) { _tolerance = 0.1 * MeV; } G4DiscreteGammaDeexcitation::~G4DiscreteGammaDeexcitation() {} G4VGammaTransition* G4DiscreteGammaDeexcitation::CreateTransition() { G4Fragment nucleus = GetNucleus(); G4int A = static_cast(nucleus.GetA()); G4int Z = static_cast(nucleus.GetZ()); if (_nucleusA != A || _nucleusZ != Z) { _nucleusA = A; _nucleusZ = Z; _levelManager = G4NuclearLevelStore::GetInstance()->GetManager(Z,A); } if (_levelManager->IsValid()) { if (_verbose > 1) { G4cout << "G4DiscreteGammaDeexcitation::CreateTransition - (A,Z) is valid " << G4endl; } G4double excitation = nucleus.GetExcitationEnergy(); // const G4NuclearLevel* level =_levelManager.NearestLevel(excitation, _tolerance); const G4NuclearLevel* level =_levelManager->NearestLevel(excitation); if (level != 0) { if (_verbose > 0) G4cout << "G4DiscreteGammaDeexcitation::CreateTransition - Created from level energy " << level->Energy() << ", excitation is " << excitation << G4endl; G4DiscreteGammaTransition* dtransit = new G4DiscreteGammaTransition(*level,Z); dtransit->SetICM(_icm); return dtransit; } else { if (_verbose > 0) G4cout << "G4DiscreteGammaDeexcitation::CreateTransition - No transition created from " << excitation << " within tolerance " << _tolerance << G4endl; return 0; } } else return 0; } G4bool G4DiscreteGammaDeexcitation::CanDoTransition() const { G4bool canDo = true; if (_transition == 0) { canDo = false; if (_verbose > 0) G4cout << "G4DiscreteGammaDeexcitation::CanDoTransition - Null transition " << G4endl; } G4Fragment nucleus = GetNucleus(); if (canDo) { G4double A = nucleus.GetA(); G4double Z = nucleus.GetZ(); if (Z<2 || A<3 || Z>98) { canDo = false; if (_verbose > 0) G4cout << "G4DiscreteGammaDeexcitation::CanDoTransition - n/p/H/>Cf" << G4endl; } } G4double excitation = nucleus.GetExcitationEnergy(); if (canDo) { if (excitation <= 0.) { canDo = false; if (_verbose > 0) G4cout << "G4DiscreteGammaDeexcitation::CanDoTransition - Excitation <= 0" << G4endl; } else { if (excitation > _levelManager->MaxLevelEnergy() + _tolerance) canDo = false; if (excitation < _levelManager->MinLevelEnergy() - _tolerance) canDo = false; // The following is a protection to avoid looping in case of elements with very low // ensdf levels if (excitation < _levelManager->MinLevelEnergy() * 0.9) canDo = false; if (_verbose > 0) { G4cout << "G4DiscreteGammaDeexcitation::CanDoTransition - Excitation " << excitation << ", Min-Max are " << _levelManager->MinLevelEnergy() << " " << _levelManager->MaxLevelEnergy() << G4endl; } } } if (canDo) { const G4NuclearLevel* level = _levelManager->NearestLevel(excitation); if (level != 0) { if (level->HalfLife() > _max_hl && !_rdm ) canDo = false; } else { canDo = false; } if (_verbose > 0) { G4cout << "G4DiscreteGammaDeexcitation::CanDoTransition - Halflife " << level->HalfLife() << ", Calling from RDM " << (_rdm ? " True " : " False ") << ", Max-HL = " << _max_hl << G4endl; } } if (_verbose > 0) { G4cout <<"G4DiscreteGammaDeexcitation::CanDoTransition - CanDo:" << (canDo ? " True " : " False ") << G4endl; } return canDo; }