source: trunk/source/processes/hadronic/models/de_excitation/photon_evaporation/src/G4E1Probability.cc @ 1348

Last change on this file since 1348 was 1347, checked in by garnier, 14 years ago

geant4 tag 9.4

File size: 6.5 KB
RevLine 
[819]1//
2// ********************************************************************
3// * License and Disclaimer                                           *
4// *                                                                  *
5// * The  Geant4 software  is  copyright of the Copyright Holders  of *
6// * the Geant4 Collaboration.  It is provided  under  the terms  and *
7// * conditions of the Geant4 Software License,  included in the file *
8// * LICENSE and available at  http://cern.ch/geant4/license .  These *
9// * include a list of copyright holders.                             *
10// *                                                                  *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work  make  any representation or  warranty, express or implied, *
14// * regarding  this  software system or assume any liability for its *
15// * use.  Please see the license in the file  LICENSE  and URL above *
16// * for the full disclaimer and the limitation of liability.         *
17// *                                                                  *
18// * This  code  implementation is the result of  the  scientific and *
19// * technical work of the GEANT4 collaboration.                      *
20// * By using,  copying,  modifying or  distributing the software (or *
21// * any work based  on the software)  you  agree  to acknowledge its *
22// * use  in  resulting  scientific  publications,  and indicate your *
23// * acceptance of all terms of the Geant4 Software license.          *
24// ********************************************************************
25//
[1347]26// $Id: G4E1Probability.cc,v 1.11 2010/11/23 18:05:07 vnivanch Exp $
27// GEANT4 tag $Name: geant4-09-04-ref-00 $
[819]28//
[1315]29//---------------------------------------------------------------------
30//
31// Geant4 class G4E1Probability
32//
33// by V. Lara (May 2003)
34//
35// Modifications:
36// 18.05.2010 V.Ivanchenko trying to speedup the most slow method
37//            by usage of G4Pow, integer A and introduction of const members
[1347]38// 17.11.2010 V.Ivanchenko perform general cleanup and simplification
39//            of integration method; low-limit of integration is defined
40//            by gamma energy or is zero (was always zero before)
[1315]41//
[819]42
43#include "G4E1Probability.hh"
44#include "Randomize.hh"
[1315]45#include "G4Pow.hh"
[819]46
47// Constructors and operators
48//
49
[1315]50G4E1Probability::G4E1Probability():G4VEmissionProbability()
[819]51{
[1315]52  G4double x = CLHEP::pi*CLHEP::hbarc;
53  normC = 1.0 / (x*x);
54  theLevelDensityParameter = 0.125/MeV;
55  fG4pow = G4Pow::GetInstance(); 
[819]56}
57
[1315]58G4E1Probability::~G4E1Probability()
59{}
[819]60
61// Calculate the emission probability
62//
63
64G4double G4E1Probability::EmissionProbDensity(const G4Fragment& frag, 
[1347]65                                              G4double gammaE)
[819]66{
67
68  // Calculate the probability density here
69
70  // From nuclear fragment properties and the excitation energy, calculate
71  // the probability density for photon evaporation from U to U - gammaE
72  // (U = nucleus excitation energy, gammaE = total evaporated photon
[1315]73  // energy). Fragment = nuclear fragment BEFORE de-excitation
[819]74
75  G4double theProb = 0.0;
76
[1315]77  G4int Afrag = frag.GetA_asInt();
78  G4double Uexcite = frag.GetExcitationEnergy();
[1347]79  G4double U = std::max(0.0,Uexcite-gammaE);
[819]80
[1347]81  if(gammaE < 0.0) { return theProb; }
[819]82
83  // Need a level density parameter.
84  // For now, just use the constant approximation (not reliable near magic
85  // nuclei).
86
[1315]87  G4double aLevelDensityParam = Afrag*theLevelDensityParameter;
[819]88
[1315]89  //  G4double levelDensBef = std::exp(2*std::sqrt(aLevelDensityParam*Uexcite));
90  //  G4double levelDensAft = std::exp(2*std::sqrt(aLevelDensityParam*(Uexcite-gammaE)));
91  // VI reduce number of calls to exp
[1347]92  G4double levelDens = 
93    std::exp(2*(std::sqrt(aLevelDensityParam*U)-std::sqrt(aLevelDensityParam*Uexcite)));
[819]94  // Now form the probability density
95
96  // Define constants for the photoabsorption cross-section (the reverse
97  // process of our de-excitation)
98
99  G4double sigma0 = 2.5 * Afrag * millibarn;  // millibarns
100
[1315]101  G4double Egdp   = (40.3 / fG4pow->powZ(Afrag,0.2) )*MeV;
[819]102  G4double GammaR = 0.30 * Egdp;
103 
104  // CD
105  //cout<<"  PROB TESTS "<<G4endl;
106  //cout<<" hbarc = "<<hbarc<<G4endl;
107  //cout<<" pi = "<<pi<<G4endl;
108  //cout<<" Uexcite, gammaE = "<<Uexcite<<"  "<<gammaE<<G4endl;
109  //cout<<" Uexcite, gammaE = "<<Uexcite*MeV<<"  "<<gammaE*MeV<<G4endl;
110  //cout<<" lev density param = "<<aLevelDensityParam<<G4endl;
111  //cout<<" level densities = "<<levelDensBef<<"  "<<levelDensAft<<G4endl;
112  //cout<<" sigma0 = "<<sigma0<<G4endl;
113  //cout<<" Egdp, GammaR = "<<Egdp<<"  "<<GammaR<<G4endl;
114  //cout<<" normC = "<<normC<<G4endl;
115
[1315]116  // VI implementation 18.05.2010
117  G4double gammaE2 = gammaE*gammaE;
118  G4double gammaR2 = gammaE2*GammaR*GammaR;
119  G4double egdp2   = gammaE2 - Egdp*Egdp;
120  G4double sigmaAbs = sigma0*gammaR2/(egdp2*egdp2 + gammaR2); 
121  theProb = normC * sigmaAbs * gammaE2 * levelDens;
[819]122
[1315]123  // old implementation
124  //  G4double numerator = sigma0 * gammaE*gammaE * GammaR*GammaR;
125  // G4double denominator = (gammaE*gammaE - Egdp*Egdp)*
126  //         (gammaE*gammaE - Egdp*Egdp) + GammaR*GammaR*gammaE*gammaE;
[819]127
[1315]128  //G4double sigmaAbs = numerator/denominator;
129  //theProb = normC * sigmaAbs * gammaE2 * levelDensAft/levelDensBef;
[819]130
131  // CD
132  //cout<<" sigmaAbs = "<<sigmaAbs<<G4endl;
133  //cout<<" Probability = "<<theProb<<G4endl;
134
135  return theProb;
136
137}
138
139G4double G4E1Probability::EmissionProbability(const G4Fragment& frag, 
[1347]140                                              G4double gammaE)
[819]141{
142  // From nuclear fragment properties and the excitation energy, calculate
143  // the probability for photon evaporation down to last ground level.
144  // fragment = nuclear fragment BEFORE de-excitation
145
[1347]146  G4double upperLim = gammaE;
147  G4double lowerLim = 0.0; 
[819]148
[1347]149  //G4cout << "G4E1Probability::EmissionProbability:  Emin= " << lowerLim
150  //     << " Emax= " << upperLim << G4endl;
151  if( upperLim - lowerLim <= CLHEP::keV ) { return 0.0; } 
[819]152
153  // Need to integrate EmissionProbDensity from lowerLim to upperLim
[1347]154  // and multiply by factor 3 (?!)
[819]155
[1347]156  G4double integ = 3.0 * EmissionIntegration(frag,lowerLim,upperLim);
[819]157
[1347]158  return integ;
[819]159
160}
161
162G4double G4E1Probability::EmissionIntegration(const G4Fragment& frag, 
[1347]163                                              G4double lowLim, G4double upLim)
[819]164
165{
[1347]166  // Simple integration
167  // VI replace by direct integration over 100 point
[819]168
[1347]169  const G4int numIters = 100;
170  G4double Step = (upLim-lowLim)/G4double(numIters);
[819]171
[1347]172  G4double res = 0.0;
173  G4double x = lowLim - 0.5*Step;
[819]174
[1347]175  for(G4int i = 0; i < numIters; ++i) {
176    x += Step;
177    res += EmissionProbDensity(frag, x);
[819]178  }
179
[1347]180  if(res > 0.0) { res /= G4double(numIters); }
181  else { res = 0.0; }
[819]182
[1347]183  return res;
[819]184
185}
186
187
Note: See TracBrowser for help on using the repository browser.