source: trunk/source/processes/hadronic/models/de_excitation/photon_evaporation/src/G4E1Probability.cc @ 1197

Last change on this file since 1197 was 819, checked in by garnier, 16 years ago

import all except CVS

File size: 6.6 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer                                           *
4// *                                                                  *
5// * The  Geant4 software  is  copyright of the Copyright Holders  of *
6// * the Geant4 Collaboration.  It is provided  under  the terms  and *
7// * conditions of the Geant4 Software License,  included in the file *
8// * LICENSE and available at  http://cern.ch/geant4/license .  These *
9// * include a list of copyright holders.                             *
10// *                                                                  *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work  make  any representation or  warranty, express or implied, *
14// * regarding  this  software system or assume any liability for its *
15// * use.  Please see the license in the file  LICENSE  and URL above *
16// * for the full disclaimer and the limitation of liability.         *
17// *                                                                  *
18// * This  code  implementation is the result of  the  scientific and *
19// * technical work of the GEANT4 collaboration.                      *
20// * By using,  copying,  modifying or  distributing the software (or *
21// * any work based  on the software)  you  agree  to acknowledge its *
22// * use  in  resulting  scientific  publications,  and indicate your *
23// * acceptance of all terms of the Geant4 Software license.          *
24// ********************************************************************
25//
26//
27//  Class G4E1Probability.cc
28//
29
30#include "G4E1Probability.hh"
31#include "G4ConstantLevelDensityParameter.hh"
32#include "Randomize.hh"
33
34// Constructors and operators
35//
36
37G4E1Probability::G4E1Probability(const G4E1Probability& ) : G4VEmissionProbability()
38{
39
40  throw G4HadronicException(__FILE__, __LINE__, "G4E1Probability::copy_constructor meant to not be accessible");
41
42}
43
44const G4E1Probability& G4E1Probability::
45operator=(const G4E1Probability& ) 
46{
47
48  throw G4HadronicException(__FILE__, __LINE__, "G4E1Probability::operator= meant to not be accessible");
49  return *this;
50}
51
52G4bool G4E1Probability::operator==(const G4E1Probability& ) const
53{
54
55  return false;
56
57}
58
59G4bool G4E1Probability::operator!=(const G4E1Probability& ) const
60{
61
62  return true;
63
64}
65
66// Calculate the emission probability
67//
68
69G4double G4E1Probability::EmissionProbDensity(const G4Fragment& frag, 
70                                                 const G4double gammaE)
71{
72
73  // Calculate the probability density here
74
75  // From nuclear fragment properties and the excitation energy, calculate
76  // the probability density for photon evaporation from U to U - gammaE
77  // (U = nucleus excitation energy, gammaE = total evaporated photon
78  // energy).
79  // fragment = nuclear fragment BEFORE de-excitation
80
81  G4double theProb = 0.0;
82
83  const G4double Afrag = frag.GetA();
84  const G4double Zfrag = frag.GetZ();
85  const G4double Uexcite = frag.GetExcitationEnergy();
86
87  if( (Uexcite-gammaE) < 0.0 || gammaE < 0 || Uexcite <= 0) return theProb;
88
89  // Need a level density parameter.
90  // For now, just use the constant approximation (not reliable near magic
91  // nuclei).
92
93  static G4ConstantLevelDensityParameter a;
94
95  G4double aLevelDensityParam = a.LevelDensityParameter(static_cast<G4int>(Afrag),
96                                                        static_cast<G4int>(Zfrag),
97                                                        Uexcite);
98
99  G4double levelDensBef = std::exp(2.0*std::sqrt(aLevelDensityParam*Uexcite));
100  G4double levelDensAft = std::exp(2.0*std::sqrt(aLevelDensityParam*(Uexcite-gammaE)));
101
102  // Now form the probability density
103
104  // Define constants for the photoabsorption cross-section (the reverse
105  // process of our de-excitation)
106
107  G4double sigma0 = 2.5 * Afrag * millibarn;  // millibarns
108
109  G4double Egdp = (40.3 / std::pow(Afrag,0.2) )*MeV;
110  G4double GammaR = 0.30 * Egdp;
111 
112  static G4double normC = 1.0 / ((pi * hbarc)*(pi * hbarc));
113
114  // CD
115  //cout<<"  PROB TESTS "<<G4endl;
116  //cout<<" hbarc = "<<hbarc<<G4endl;
117  //cout<<" pi = "<<pi<<G4endl;
118  //cout<<" Uexcite, gammaE = "<<Uexcite<<"  "<<gammaE<<G4endl;
119  //cout<<" Uexcite, gammaE = "<<Uexcite*MeV<<"  "<<gammaE*MeV<<G4endl;
120  //cout<<" lev density param = "<<aLevelDensityParam<<G4endl;
121  //cout<<" level densities = "<<levelDensBef<<"  "<<levelDensAft<<G4endl;
122  //cout<<" sigma0 = "<<sigma0<<G4endl;
123  //cout<<" Egdp, GammaR = "<<Egdp<<"  "<<GammaR<<G4endl;
124  //cout<<" normC = "<<normC<<G4endl;
125
126  G4double numerator = sigma0 * gammaE*gammaE * GammaR*GammaR;
127  G4double denominator = (gammaE*gammaE - Egdp*Egdp)*
128           (gammaE*gammaE - Egdp*Egdp) + GammaR*GammaR*gammaE*gammaE;
129
130  G4double sigmaAbs = numerator/denominator; 
131
132  theProb = normC * sigmaAbs * gammaE*gammaE *
133            levelDensAft/levelDensBef;
134
135  // CD
136  //cout<<" sigmaAbs = "<<sigmaAbs<<G4endl;
137  //cout<<" Probability = "<<theProb<<G4endl;
138
139  return theProb;
140
141}
142
143G4double G4E1Probability::EmissionProbability(const G4Fragment& frag, 
144                                                 const G4double gammaE)
145{
146
147  // From nuclear fragment properties and the excitation energy, calculate
148  // the probability for photon evaporation down to last ground level.
149  // fragment = nuclear fragment BEFORE de-excitation
150
151  G4double theProb = 0.0;
152
153  G4double Uafter = 0.0;
154  const G4double Uexcite = frag.GetExcitationEnergy();
155
156  G4double normC = 3.0;
157
158  const G4double upperLim = Uexcite;
159  const G4double lowerLim = Uafter;
160  const G4int numIters = 100;
161
162  // Fall-back is a uniform random number
163
164  //G4double uniformNum = G4UniformRand();
165  //theProb = uniformNum;
166
167  // Need to integrate EmissionProbDensity from lowerLim to upperLim
168  // and multiply by normC
169
170  G4double integ = normC *
171           EmissionIntegration(frag,gammaE,lowerLim,upperLim,numIters);
172  if(integ > 0.0) theProb = integ/(upperLim-lowerLim);
173
174  return theProb;
175
176}
177
178G4double G4E1Probability::EmissionIntegration(const G4Fragment& frag, 
179                             const G4double ,
180                             const G4double lowLim, const G4double upLim,
181                             const G4int numIters)
182
183{
184
185  // Simple Gaussian quadrature integration
186
187  G4double x;
188  G4double root3 = 1.0/std::sqrt(3.0);
189
190  G4double Step = (upLim-lowLim)/(2.0*numIters);
191  G4double Delta = Step*root3;
192
193  G4double mean = 0.0;
194
195  G4double theInt = 0.0;
196
197  for(G4int i = 0; i < numIters; i++) {
198
199    x = (2*i + 1)*Step;
200    G4double E1ProbDensityA = EmissionProbDensity(frag,x+Delta);
201    G4double E1ProbDensityB = EmissionProbDensity(frag,x-Delta);
202
203    mean += E1ProbDensityA + E1ProbDensityB;
204
205  }
206
207  if(mean*Step > 0.0) theInt = mean*Step;
208
209  return theInt;
210
211}
212
213G4E1Probability::~G4E1Probability() {}
214
215
Note: See TracBrowser for help on using the repository browser.