source: trunk/source/processes/hadronic/models/de_excitation/photon_evaporation/src/G4E1SingleProbability1.cc @ 978

Last change on this file since 978 was 819, checked in by garnier, 16 years ago

import all except CVS

File size: 6.7 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer                                           *
4// *                                                                  *
5// * The  Geant4 software  is  copyright of the Copyright Holders  of *
6// * the Geant4 Collaboration.  It is provided  under  the terms  and *
7// * conditions of the Geant4 Software License,  included in the file *
8// * LICENSE and available at  http://cern.ch/geant4/license .  These *
9// * include a list of copyright holders.                             *
10// *                                                                  *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work  make  any representation or  warranty, express or implied, *
14// * regarding  this  software system or assume any liability for its *
15// * use.  Please see the license in the file  LICENSE  and URL above *
16// * for the full disclaimer and the limitation of liability.         *
17// *                                                                  *
18// * This  code  implementation is the result of  the  scientific and *
19// * technical work of the GEANT4 collaboration.                      *
20// * By using,  copying,  modifying or  distributing the software (or *
21// * any work based  on the software)  you  agree  to acknowledge its *
22// * use  in  resulting  scientific  publications,  and indicate your *
23// * acceptance of all terms of the Geant4 Software license.          *
24// ********************************************************************
25//
26//
27//  Class G4E1SingleProbability1.cc
28//
29
30#include "G4E1SingleProbability1.hh"
31#include "G4ConstantLevelDensityParameter.hh"
32#include "Randomize.hh"
33
34// Constructors and operators
35//
36
37G4E1SingleProbability1::G4E1SingleProbability1(const G4E1SingleProbability1& 
38                                               ) : G4VEmissionProbability()
39{
40
41  throw G4HadronicException(__FILE__, __LINE__, "G4E1SingleProbability1::copy_constructor meant to not be accessible");
42
43}
44
45const G4E1SingleProbability1& G4E1SingleProbability1::
46operator=(const G4E1SingleProbability1& ) 
47{
48
49  throw G4HadronicException(__FILE__, __LINE__, "G4E1SingleProbability1::operator= meant to not be accessible");
50  return *this;
51}
52
53G4bool G4E1SingleProbability1::operator==(const G4E1SingleProbability1& 
54                                          ) const
55{
56
57  return false;
58
59}
60
61G4bool G4E1SingleProbability1::operator!=(const G4E1SingleProbability1& )
62const
63{
64
65  return true;
66
67}
68
69// Calculate the emission probability
70//
71
72G4double G4E1SingleProbability1::EmissionProbDensity(const G4Fragment& frag, 
73                                                     const G4double exciteE)
74{
75
76  // Calculate the probability density here
77
78  // From nuclear fragment properties and the excitation energy, calculate
79  // the probability density for photon evaporation from U to U - exciteE
80  // (U = nucleus excitation energy, exciteE = total evaporated photon
81  // energy).
82  // fragment = nuclear fragment BEFORE de-excitation
83
84  G4double theProb = 0.0;
85
86  const G4double Afrag = frag.GetA();
87  const G4double Zfrag = frag.GetZ();
88  const G4double Uexcite = frag.GetExcitationEnergy();
89
90  if( (Uexcite-exciteE) < 0.0 || exciteE < 0 || Uexcite <= 0) return theProb;
91
92  // Need a level density parameter.
93  // For now, just use the constant approximation (not reliable near magic
94  // nuclei).
95
96  G4ConstantLevelDensityParameter a;
97  G4double aLevelDensityParam = a.LevelDensityParameter(static_cast<G4int>(Afrag),
98                                                        static_cast<G4int>(Zfrag),
99                                                        Uexcite);
100
101  G4double levelDensBef = std::exp(2.0*std::sqrt(aLevelDensityParam*Uexcite));
102  G4double levelDensAft = std::exp(2.0*std::sqrt(aLevelDensityParam*(Uexcite-exciteE)));
103
104  // Now form the probability density
105
106  // Define constants for the photoabsorption cross-section (the reverse
107  // process of our de-excitation)
108
109  G4double sigma0 = 2.5 * Afrag * millibarn;  // millibarns
110
111  G4double Egdp = (40.3 / std::pow(Afrag,0.2) )*MeV;
112  G4double GammaR = 0.30 * Egdp;
113 
114  G4double normC = 1.0 / ((pi * hbarc)*(pi * hbarc));
115
116  // CD
117  //cout<<"  PROB TESTS "<<G4endl;
118  //cout<<" hbarc = "<<hbarc<<G4endl;
119  //cout<<" pi = "<<pi<<G4endl;
120  //cout<<" Uexcite, exciteE = "<<Uexcite<<"  "<<exciteE<<G4endl;
121  //cout<<" Uexcite, exciteE = "<<Uexcite*MeV<<"  "<<exciteE*MeV<<G4endl;
122  //cout<<" lev density param = "<<aLevelDensityParam<<G4endl;
123  //cout<<" level densities = "<<levelDensBef<<"  "<<levelDensAft<<G4endl;
124  //cout<<" sigma0 = "<<sigma0<<G4endl;
125  //cout<<" Egdp, GammaR = "<<Egdp<<"  "<<GammaR<<G4endl;
126  //cout<<" normC = "<<normC<<G4endl;
127
128  G4double numerator = sigma0 * exciteE*exciteE * GammaR*GammaR;
129  G4double denominator = (exciteE*exciteE - Egdp*Egdp)*
130           (exciteE*exciteE - Egdp*Egdp) + GammaR*GammaR*exciteE*exciteE;
131
132  G4double sigmaAbs = numerator/denominator; 
133
134  theProb = normC * sigmaAbs * exciteE*exciteE *
135            levelDensAft/levelDensBef;
136
137  // CD
138  //cout<<" sigmaAbs = "<<sigmaAbs<<G4endl;
139  //cout<<" Probability = "<<theProb<<G4endl;
140
141  return theProb;
142
143}
144
145G4double G4E1SingleProbability1::EmissionProbability(const G4Fragment& frag, 
146                                                     const G4double exciteE)
147{
148
149  // From nuclear fragment properties and the excitation energy, calculate
150  // the probability for photon evaporation down to the level
151  // Uexcite-exciteE.
152  // fragment = nuclear fragment BEFORE de-excitation
153
154  G4double theProb = 0.0;
155
156  G4double ScaleFactor = 1.0;     // playing with scale factors
157
158  const G4double Uexcite = frag.GetExcitationEnergy();
159  G4double Uafter = Uexcite - exciteE;
160
161  G4double normC = 3.0;
162
163  const G4double upperLim = Uexcite;
164  const G4double lowerLim = Uafter;
165  const G4int numIters = 25;
166
167  // Need to integrate EmissionProbDensity from lowerLim to upperLim
168  // and multiply by normC
169
170  G4double integ = normC *
171           EmissionIntegration(frag,exciteE,lowerLim,upperLim,numIters);
172
173  if(integ > 0.0) theProb = integ;
174
175  return theProb * ScaleFactor;
176
177}
178
179G4double G4E1SingleProbability1::EmissionIntegration(const G4Fragment& frag, 
180                             const G4double ,
181                             const G4double lowLim, const G4double upLim,
182                             const G4int numIters)
183
184{
185
186  // Simple Gaussian quadrature integration
187
188  G4double x;
189  G4double root3 = 1.0/std::sqrt(3.0);
190
191  G4double Step = (upLim-lowLim)/(2.0*numIters);
192  G4double Delta = Step*root3;
193
194  G4double mean = 0.0;
195
196  G4double theInt = 0.0;
197
198  for(G4int i = 0; i < numIters; i++) {
199
200    x = (2*i + 1)/Step;
201    G4double E1ProbDensityA = EmissionProbDensity(frag,x+Delta);
202    G4double E1ProbDensityB = EmissionProbDensity(frag,x-Delta);
203
204    mean += E1ProbDensityA + E1ProbDensityB;
205
206  }
207
208  if(mean*Step > 0.0) theInt = mean*Step;
209
210  return theInt;
211
212}
213
214G4E1SingleProbability1::~G4E1SingleProbability1() {}
215
216
Note: See TracBrowser for help on using the repository browser.