source: trunk/source/processes/hadronic/models/de_excitation/photon_evaporation/src/G4E1SingleProbability1.cc @ 1348

Last change on this file since 1348 was 1347, checked in by garnier, 14 years ago

geant4 tag 9.4

File size: 6.1 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer                                           *
4// *                                                                  *
5// * The  Geant4 software  is  copyright of the Copyright Holders  of *
6// * the Geant4 Collaboration.  It is provided  under  the terms  and *
7// * conditions of the Geant4 Software License,  included in the file *
8// * LICENSE and available at  http://cern.ch/geant4/license .  These *
9// * include a list of copyright holders.                             *
10// *                                                                  *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work  make  any representation or  warranty, express or implied, *
14// * regarding  this  software system or assume any liability for its *
15// * use.  Please see the license in the file  LICENSE  and URL above *
16// * for the full disclaimer and the limitation of liability.         *
17// *                                                                  *
18// * This  code  implementation is the result of  the  scientific and *
19// * technical work of the GEANT4 collaboration.                      *
20// * By using,  copying,  modifying or  distributing the software (or *
21// * any work based  on the software)  you  agree  to acknowledge its *
22// * use  in  resulting  scientific  publications,  and indicate your *
23// * acceptance of all terms of the Geant4 Software license.          *
24// ********************************************************************
25//
26// $Id: G4E1SingleProbability1.cc,v 1.5 2010/11/17 16:50:53 vnivanch Exp $
27// GEANT4 tag $Name: geant4-09-04-ref-00 $
28//
29//  Class G4E1SingleProbability1.cc
30//
31
32#include "G4E1SingleProbability1.hh"
33#include "G4ConstantLevelDensityParameter.hh"
34#include "Randomize.hh"
35#include "G4Pow.hh"
36
37// Constructors and operators
38//
39
40G4E1SingleProbability1::G4E1SingleProbability1()
41{}
42
43G4E1SingleProbability1::~G4E1SingleProbability1()
44{}
45
46// Calculate the emission probability
47//
48
49G4double G4E1SingleProbability1::EmissionProbDensity(const G4Fragment& frag, 
50                                                     G4double exciteE)
51{
52
53  // Calculate the probability density here
54
55  // From nuclear fragment properties and the excitation energy, calculate
56  // the probability density for photon evaporation from U to U - exciteE
57  // (U = nucleus excitation energy, exciteE = total evaporated photon
58  // energy).
59  // fragment = nuclear fragment BEFORE de-excitation
60
61  G4double theProb = 0.0;
62
63  G4int Afrag = frag.GetA_asInt();
64  G4int Zfrag = frag.GetZ_asInt();
65  G4double Uexcite = frag.GetExcitationEnergy();
66
67  if( (Uexcite-exciteE) < 0.0 || exciteE < 0 || Uexcite <= 0) return theProb;
68
69  // Need a level density parameter.
70  // For now, just use the constant approximation (not reliable near magic
71  // nuclei).
72
73  G4ConstantLevelDensityParameter a;
74  G4double aLevelDensityParam = a.LevelDensityParameter(Afrag,Zfrag,Uexcite);
75
76  G4double levelDensBef = std::exp(2.0*std::sqrt(aLevelDensityParam*Uexcite));
77  G4double levelDensAft = std::exp(2.0*std::sqrt(aLevelDensityParam*(Uexcite-exciteE)));
78
79  // Now form the probability density
80
81  // Define constants for the photoabsorption cross-section (the reverse
82  // process of our de-excitation)
83
84  G4double sigma0 = 2.5 * Afrag * millibarn;  // millibarns
85
86  G4double Egdp = (40.3 / G4Pow::GetInstance()->powZ(Afrag,0.2) )*MeV;
87  G4double GammaR = 0.30 * Egdp;
88 
89  const G4double normC = 1.0 / ((pi * hbarc)*(pi * hbarc));
90
91  // CD
92  //cout<<"  PROB TESTS "<<G4endl;
93  //cout<<" hbarc = "<<hbarc<<G4endl;
94  //cout<<" pi = "<<pi<<G4endl;
95  //cout<<" Uexcite, exciteE = "<<Uexcite<<"  "<<exciteE<<G4endl;
96  //cout<<" Uexcite, exciteE = "<<Uexcite*MeV<<"  "<<exciteE*MeV<<G4endl;
97  //cout<<" lev density param = "<<aLevelDensityParam<<G4endl;
98  //cout<<" level densities = "<<levelDensBef<<"  "<<levelDensAft<<G4endl;
99  //cout<<" sigma0 = "<<sigma0<<G4endl;
100  //cout<<" Egdp, GammaR = "<<Egdp<<"  "<<GammaR<<G4endl;
101  //cout<<" normC = "<<normC<<G4endl;
102
103  G4double numerator = sigma0 * exciteE*exciteE * GammaR*GammaR;
104  G4double denominator = (exciteE*exciteE - Egdp*Egdp)*
105           (exciteE*exciteE - Egdp*Egdp) + GammaR*GammaR*exciteE*exciteE;
106
107  G4double sigmaAbs = numerator/denominator; 
108
109  theProb = normC * sigmaAbs * exciteE*exciteE *
110            levelDensAft/levelDensBef;
111
112  // CD
113  //cout<<" sigmaAbs = "<<sigmaAbs<<G4endl;
114  //cout<<" Probability = "<<theProb<<G4endl;
115
116  return theProb;
117
118}
119
120G4double G4E1SingleProbability1::EmissionProbability(const G4Fragment& frag, 
121                                                     G4double exciteE)
122{
123
124  // From nuclear fragment properties and the excitation energy, calculate
125  // the probability for photon evaporation down to the level
126  // Uexcite-exciteE.
127  // fragment = nuclear fragment BEFORE de-excitation
128
129  G4double theProb = 0.0;
130
131  G4double ScaleFactor = 1.0;     // playing with scale factors
132
133  const G4double Uexcite = frag.GetExcitationEnergy();
134  G4double Uafter = Uexcite - exciteE;
135
136  G4double normC = 3.0;
137
138  const G4double upperLim = Uexcite;
139  const G4double lowerLim = Uafter;
140  const G4int numIters = 25;
141
142  // Need to integrate EmissionProbDensity from lowerLim to upperLim
143  // and multiply by normC
144
145  G4double integ = normC *
146           EmissionIntegration(frag,exciteE,lowerLim,upperLim,numIters);
147
148  if(integ > 0.0) theProb = integ;
149
150  return theProb * ScaleFactor;
151
152}
153
154G4double G4E1SingleProbability1::EmissionIntegration(const G4Fragment& frag, 
155                                                     G4double ,
156                                                     G4double lowLim, G4double upLim,
157                                                     G4int numIters)
158
159{
160
161  // Simple Gaussian quadrature integration
162
163  G4double x;
164  const G4double root3 = 1.0/std::sqrt(3.0);
165
166  G4double Step = (upLim-lowLim)/(2.0*numIters);
167  G4double Delta = Step*root3;
168
169  G4double mean = 0.0;
170
171  G4double theInt = 0.0;
172
173  for(G4int i = 0; i < numIters; i++) {
174
175    x = (2*i + 1)/Step;
176    G4double E1ProbDensityA = EmissionProbDensity(frag,x+Delta);
177    G4double E1ProbDensityB = EmissionProbDensity(frag,x-Delta);
178
179    mean += E1ProbDensityA + E1ProbDensityB;
180
181  }
182
183  if(mean*Step > 0.0) theInt = mean*Step;
184
185  return theInt;
186
187}
188
189
190
Note: See TracBrowser for help on using the repository browser.