// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // $Id: G4CoulombBarrier.cc,v 1.10 2010/11/15 12:44:06 vnivanch Exp $ // GEANT4 tag $Name: geant4-09-04-ref-00 $ // // Hadronic Process: Nuclear De-excitations // by V. Lara (Dec 1999) // // 14-11-2007 modified barrier by JMQ (test30) // 15-11-2010 V.Ivanchenko use G4Pow and cleanup #include "G4CoulombBarrier.hh" #include "G4HadronicException.hh" #include "G4Pow.hh" #include G4CoulombBarrier::G4CoulombBarrier(): G4VCoulombBarrier(1,0) {} G4CoulombBarrier::G4CoulombBarrier(G4int anA, G4int aZ) : G4VCoulombBarrier(anA,aZ) {} G4CoulombBarrier::~G4CoulombBarrier() {} G4double G4CoulombBarrier::BarrierPenetrationFactor(G4double ) const { return 1.0; } G4double G4CoulombBarrier::GetCoulombBarrier(const G4int ARes, const G4int ZRes, const G4double) const // Calculation of Coulomb potential energy (barrier) for outgoing fragment { G4double Barrier = 0.0; if (ZRes > ARes || ARes < 1) { std::ostringstream errOs; errOs << "G4CoulombBarrier::GetCoulombBarrier: "; errOs << "Wrong values for "; errOs << "residual nucleus A = " << ARes << " "; errOs << "and residual nucleus Z = " << ZRes << G4endl; throw G4HadronicException(__FILE__, __LINE__, errOs.str()); } if (GetA() == 1 && GetZ() == 0) { Barrier = 0.0; // Neutron Coulomb Barrier is 0 } else { // JMQ: old coulomb barrier commented since it does not agree with Dostrovski's prescription // and too low barriers are obtained (for protons at least) // calculation of K penetration factor is correct // G4double CompoundRadius = CalcCompoundRadius(static_cast(ZRes)); // Barrier = elm_coupling/CompoundRadius * static_cast(GetZ())*static_cast(ZRes)/ // (std::pow(static_cast(GetA()),1./3.) + std::pow(static_cast(ARes),1./3.)); ///New coulomb Barrier according to original Dostrovski's paper G4double rho=1.2*fermi; if(GetA()==1 && GetZ()==1){ rho=0.0;} G4double RN=1.5*fermi; // VI cleanup Barrier=elm_coupling*(GetZ()*ZRes)/(RN * G4Pow::GetInstance()->Z13(ARes) + rho); // Barrier penetration coeficient G4double K = BarrierPenetrationFactor(ZRes); Barrier *= K; // JMQ : the following statement has unknown origin and dimensionally is meaningless( energy divided by mass number in argument of sqrt function). Energy dependence of Coulomb barrier penetrability should be included in proper way (if needed..) // Barrier /= (1.0 + std::sqrt(U/(2.0*static_cast(ARes)))); // } return Barrier; }