// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * * // * Parts of this code which have been developed by QinetiQ Ltd * // * under contract to the European Space Agency (ESA) are the * // * intellectual property of ESA. Rights to use, copy, modify and * // * redistribute this software for general public use are granted * // * in compliance with any licensing, distribution and development * // * policy adopted by the Geant4 Collaboration. This code has been * // * written by QinetiQ Ltd for the European Space Agency, under ESA * // * contract 17191/03/NL/LvH (Aurora Programme). * // * * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% // // MODULE: G4EMDissociation.cc // // Version: B.1 // Date: 15/04/04 // Author: P R Truscott // Organisation: QinetiQ Ltd, UK // Customer: ESA/ESTEC, NOORDWIJK // Contract: 17191/03/NL/LvH // // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% // // CHANGE HISTORY // -------------- // // 17 October 2003, P R Truscott, QinetiQ Ltd, UK // Created. // // 15 March 2004, P R Truscott, QinetiQ Ltd, UK // Beta release // // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% //////////////////////////////////////////////////////////////////////////////// // #include "G4EMDissociation.hh" #include "G4Evaporation.hh" #include "G4FermiBreakUp.hh" #include "G4StatMF.hh" #include "G4ParticleDefinition.hh" #include "G4LorentzVector.hh" #include "G4PhysicsFreeVector.hh" #include "G4EMDissociationCrossSection.hh" #include "G4Proton.hh" #include "G4Neutron.hh" #include "G4ParticleTable.hh" #include "G4IonTable.hh" #include "G4GeneralPhaseSpaceDecay.hh" #include "G4DecayProducts.hh" #include "G4DynamicParticle.hh" #include "G4Fragment.hh" #include "G4ReactionProductVector.hh" #include "Randomize.hh" #include "globals.hh" //////////////////////////////////////////////////////////////////////////////// // G4EMDissociation::G4EMDissociation():G4HadronicInteraction("EMDissociation") { // // // Send message to stdout to advise that the G4EMDissociation model is being // used. // PrintWelcomeMessage(); // // // No de-excitation handler has been supplied - define the default handler. // theExcitationHandler = new G4ExcitationHandler; G4Evaporation * theEvaporation = new G4Evaporation; G4FermiBreakUp * theFermiBreakUp = new G4FermiBreakUp; G4StatMF * theMF = new G4StatMF; theExcitationHandler->SetEvaporation(theEvaporation); theExcitationHandler->SetFermiModel(theFermiBreakUp); theExcitationHandler->SetMultiFragmentation(theMF); theExcitationHandler->SetMaxAandZForFermiBreakUp(12, 6); theExcitationHandler->SetMinEForMultiFrag(5.0*MeV); handlerDefinedInternally = true; // // // This EM dissociation model needs access to the cross-sections held in // G4EMDissociationCrossSection. // dissociationCrossSection = new G4EMDissociationCrossSection; thePhotonSpectrum = new G4EMDissociationSpectrum; // // // Set the minimum and maximum range for the model (despite nomanclature, this // is in energy per nucleon number). // SetMinEnergy(100.0*MeV); SetMaxEnergy(500.0*GeV); // // // Set the default verbose level to 0 - no output. // verboseLevel = 0; } //////////////////////////////////////////////////////////////////////////////// // G4EMDissociation::G4EMDissociation (G4ExcitationHandler *aExcitationHandler) { // // // Send message to stdout to advise that the G4EMDissociation model is being // used. // PrintWelcomeMessage(); theExcitationHandler = aExcitationHandler; handlerDefinedInternally = false; // // // This EM dissociation model needs access to the cross-sections held in // G4EMDissociationCrossSection. // dissociationCrossSection = new G4EMDissociationCrossSection; thePhotonSpectrum = new G4EMDissociationSpectrum; // // // Set the minimum and maximum range for the model (despite nomanclature, this // is in energy per nucleon number). // SetMinEnergy(100.0*MeV); SetMaxEnergy(500.0*GeV); // // // Set the default verbose level to 0 - no output. // verboseLevel = 0; } //////////////////////////////////////////////////////////////////////////////// // G4EMDissociation::~G4EMDissociation () { if (handlerDefinedInternally) delete theExcitationHandler; delete dissociationCrossSection; delete thePhotonSpectrum; } //////////////////////////////////////////////////////////////////////////////// // G4HadFinalState *G4EMDissociation::ApplyYourself (const G4HadProjectile &theTrack, G4Nucleus &theTarget) { // // // The secondaries will be returned in G4HadFinalState &theParticleChange - // initialise this. // theParticleChange.Clear(); theParticleChange.SetStatusChange(stopAndKill); // // // Get relevant information about the projectile and target (A, Z) and // energy/nuc, momentum, velocity, Lorentz factor and rest-mass of the // projectile. // const G4ParticleDefinition *definitionP = theTrack.GetDefinition(); const G4double AP = definitionP->GetBaryonNumber(); const G4double ZP = definitionP->GetPDGCharge(); G4LorentzVector pP = theTrack.Get4Momentum(); G4double E = theTrack.GetKineticEnergy()/AP; G4double MP = theTrack.GetTotalEnergy() - E*AP; G4double b = pP.beta(); G4double AT = theTarget.GetN(); G4double ZT = theTarget.GetZ(); G4double MT = G4NucleiProperties::GetNuclearMass(AT,ZT); // // // Depending upon the verbosity level, output the initial information on the // projectile and target. // if (verboseLevel >= 2) { G4cout.precision(6); G4cout <<"########################################" <<"########################################" <GetClosestApproach(AP, ZP, AT, ZT, b); G4PhysicsFreeVector *crossSectionP = dissociationCrossSection-> GetCrossSectionForProjectile(AP, ZP, AT, ZT, b, bmin); G4PhysicsFreeVector *crossSectionT = dissociationCrossSection-> GetCrossSectionForTarget(AP, ZP, AT, ZT, b, bmin); G4double totCrossSectionP = (*crossSectionP)[0]+(*crossSectionP)[1]; G4double totCrossSectionT = (*crossSectionT)[0]+(*crossSectionT)[1]; // // // Now sample whether the interaction involved EM dissociation of the projectile // or the target. // if (G4UniformRand() < totCrossSectionP / (totCrossSectionP + totCrossSectionT)) { // // // It was the projectile which underwent EM dissociation. Define the Lorentz // boost to be applied to the secondaries, and sample whether a proton or a // neutron was ejected. Then determine the energy of the virtual gamma ray // which passed from the target nucleus ... this will be used to define the // excitation of the projectile. // mass = MP; if (G4UniformRand() < dissociationCrossSection-> GetWilsonProbabilityForProtonDissociation (AP, ZP)) { if (verboseLevel >= 2) G4cout <<"Projectile underwent EM dissociation producing a proton" < GetIon((G4int) ZP-1, (G4int) AP-1, 0.0); } else { if (verboseLevel >= 2) G4cout <<"Projectile underwent EM dissociation producing a neutron" < GetIon((G4int) ZP, (G4int) AP-1, 0.0); } if (G4UniformRand() < (*crossSectionP)[0]/totCrossSectionP) { Eg = crossSectionP->GetLowEdgeEnergy(0); if (verboseLevel >= 2) G4cout <<"Transition type was E1" <GetLowEdgeEnergy(1); if (verboseLevel >= 2) G4cout <<"Transition type was E2" < GetWilsonProbabilityForProtonDissociation (AT, ZT)) { if (verboseLevel >= 2) G4cout <<"Target underwent EM dissociation producing a proton" < GetIon((G4int) ZT-1, (G4int) AT-1, 0.0); } else { if (verboseLevel >= 2) G4cout <<"Target underwent EM dissociation producing a neutron" < GetIon((G4int) ZT, (G4int) AT-1, 0.0); } if (G4UniformRand() < (*crossSectionT)[0]/totCrossSectionT) { Eg = crossSectionT->GetLowEdgeEnergy(0); if (verboseLevel >= 2) G4cout <<"Transition type was E1" <GetLowEdgeEnergy(1); if (verboseLevel >= 2) G4cout <<"Transition type was E2" <(definitionP), v, E*AP-Eg); theParticleChange.AddSecondary (changedP); if (verboseLevel >= 2) { G4cout <<"Projectile change:" <DumpInfo(); } } // // // Perform a two-body decay based on the restmass energy of the parent and // gamma-ray, and the masses of the daughters. In the frame of reference of // the nucles, the angular distribution is sampled isotropically, but the // the nucleon and secondary nucleus are boosted if they've come from the // projectile. // G4double e = mass + Eg; G4double m1 = typeNucleon->GetPDGMass(); G4double m2 = typeDaughter->GetPDGMass(); G4double pp = (e+m1+m2)*(e+m1-m2)*(e-m1+m2)*(e-m1-m2)/(4.0*e*e); if (pp < 0.0) { pp = 1.0*eV; // if (verboseLevel >`= 1) // { // G4cout <<"IN G4EMDissociation::ApplyYoursef" <Set4Momentum(dynamicNucleon->Get4Momentum().boost(-boost)); G4DynamicParticle *dynamicDaughter = new G4DynamicParticle(typeDaughter, -direction*pp); dynamicDaughter->Set4Momentum(dynamicDaughter->Get4Momentum().boost(-boost)); // // // The "decay" products have to be transferred to the G4HadFinalState object. // Furthermore, the residual nucleus should be de-excited. // theParticleChange.AddSecondary (dynamicNucleon); if (verboseLevel >= 2) { G4cout <<"Nucleon from the EMD process:" <DumpInfo(); } G4Fragment *theFragment = new G4Fragment((G4int) typeDaughter->GetBaryonNumber(), (G4int) typeDaughter->GetPDGCharge(), dynamicDaughter->Get4Momentum()); if (verboseLevel >= 2) { G4cout <<"Dynamic properties of the prefragment:" <DumpInfo(); G4cout <<"Nuclear properties of the prefragment:" <BreakItUp(*theFragment); delete theFragment; theFragment = NULL; G4ReactionProductVector::iterator iter; for (iter = products->begin(); iter != products->end(); ++iter) { G4DynamicParticle *secondary = new G4DynamicParticle((*iter)->GetDefinition(), (*iter)->GetTotalEnergy(), (*iter)->GetMomentum()); theParticleChange.AddSecondary (secondary); } if (verboseLevel >= 2) G4cout <<"########################################" <<"########################################" <