| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * *
|
|---|
| 21 | // * Parts of this code which have been developed by QinetiQ Ltd *
|
|---|
| 22 | // * under contract to the European Space Agency (ESA) are the *
|
|---|
| 23 | // * intellectual property of ESA. Rights to use, copy, modify and *
|
|---|
| 24 | // * redistribute this software for general public use are granted *
|
|---|
| 25 | // * in compliance with any licensing, distribution and development *
|
|---|
| 26 | // * policy adopted by the Geant4 Collaboration. This code has been *
|
|---|
| 27 | // * written by QinetiQ Ltd for the European Space Agency, under ESA *
|
|---|
| 28 | // * contract 17191/03/NL/LvH (Aurora Programme). *
|
|---|
| 29 | // * *
|
|---|
| 30 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 31 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 32 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 33 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 34 | // ********************************************************************
|
|---|
| 35 | //
|
|---|
| 36 | // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|---|
| 37 | //
|
|---|
| 38 | // MODULE: G4EMDissociation.cc
|
|---|
| 39 | //
|
|---|
| 40 | // Version: B.1
|
|---|
| 41 | // Date: 15/04/04
|
|---|
| 42 | // Author: P R Truscott
|
|---|
| 43 | // Organisation: QinetiQ Ltd, UK
|
|---|
| 44 | // Customer: ESA/ESTEC, NOORDWIJK
|
|---|
| 45 | // Contract: 17191/03/NL/LvH
|
|---|
| 46 | //
|
|---|
| 47 | // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|---|
| 48 | //
|
|---|
| 49 | // CHANGE HISTORY
|
|---|
| 50 | // --------------
|
|---|
| 51 | //
|
|---|
| 52 | // 17 October 2003, P R Truscott, QinetiQ Ltd, UK
|
|---|
| 53 | // Created.
|
|---|
| 54 | //
|
|---|
| 55 | // 15 March 2004, P R Truscott, QinetiQ Ltd, UK
|
|---|
| 56 | // Beta release
|
|---|
| 57 | //
|
|---|
| 58 | // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|---|
| 59 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 60 | //
|
|---|
| 61 | #include "G4EMDissociation.hh"
|
|---|
| 62 | #include "G4Evaporation.hh"
|
|---|
| 63 | #include "G4FermiBreakUp.hh"
|
|---|
| 64 | #include "G4StatMF.hh"
|
|---|
| 65 | #include "G4ParticleDefinition.hh"
|
|---|
| 66 | #include "G4LorentzVector.hh"
|
|---|
| 67 | #include "G4PhysicsFreeVector.hh"
|
|---|
| 68 | #include "G4EMDissociationCrossSection.hh"
|
|---|
| 69 | #include "G4Proton.hh"
|
|---|
| 70 | #include "G4Neutron.hh"
|
|---|
| 71 | #include "G4ParticleTable.hh"
|
|---|
| 72 | #include "G4IonTable.hh"
|
|---|
| 73 | #include "G4GeneralPhaseSpaceDecay.hh"
|
|---|
| 74 | #include "G4DecayProducts.hh"
|
|---|
| 75 | #include "G4DynamicParticle.hh"
|
|---|
| 76 | #include "G4Fragment.hh"
|
|---|
| 77 | #include "G4ReactionProductVector.hh"
|
|---|
| 78 | #include "Randomize.hh"
|
|---|
| 79 | #include "globals.hh"
|
|---|
| 80 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 81 | //
|
|---|
| 82 | G4EMDissociation::G4EMDissociation():G4HadronicInteraction("EMDissociation")
|
|---|
| 83 | {
|
|---|
| 84 | //
|
|---|
| 85 | //
|
|---|
| 86 | // Send message to stdout to advise that the G4EMDissociation model is being
|
|---|
| 87 | // used.
|
|---|
| 88 | //
|
|---|
| 89 | PrintWelcomeMessage();
|
|---|
| 90 | //
|
|---|
| 91 | //
|
|---|
| 92 | // No de-excitation handler has been supplied - define the default handler.
|
|---|
| 93 | //
|
|---|
| 94 | theExcitationHandler = new G4ExcitationHandler;
|
|---|
| 95 | G4Evaporation * theEvaporation = new G4Evaporation;
|
|---|
| 96 | G4FermiBreakUp * theFermiBreakUp = new G4FermiBreakUp;
|
|---|
| 97 | G4StatMF * theMF = new G4StatMF;
|
|---|
| 98 | theExcitationHandler->SetEvaporation(theEvaporation);
|
|---|
| 99 | theExcitationHandler->SetFermiModel(theFermiBreakUp);
|
|---|
| 100 | theExcitationHandler->SetMultiFragmentation(theMF);
|
|---|
| 101 | theExcitationHandler->SetMaxAandZForFermiBreakUp(12, 6);
|
|---|
| 102 | theExcitationHandler->SetMinEForMultiFrag(5.0*MeV);
|
|---|
| 103 | handlerDefinedInternally = true;
|
|---|
| 104 | //
|
|---|
| 105 | //
|
|---|
| 106 | // This EM dissociation model needs access to the cross-sections held in
|
|---|
| 107 | // G4EMDissociationCrossSection.
|
|---|
| 108 | //
|
|---|
| 109 | dissociationCrossSection = new G4EMDissociationCrossSection;
|
|---|
| 110 | thePhotonSpectrum = new G4EMDissociationSpectrum;
|
|---|
| 111 | //
|
|---|
| 112 | //
|
|---|
| 113 | // Set the minimum and maximum range for the model (despite nomanclature, this
|
|---|
| 114 | // is in energy per nucleon number).
|
|---|
| 115 | //
|
|---|
| 116 | SetMinEnergy(100.0*MeV);
|
|---|
| 117 | SetMaxEnergy(500.0*GeV);
|
|---|
| 118 | //
|
|---|
| 119 | //
|
|---|
| 120 | // Set the default verbose level to 0 - no output.
|
|---|
| 121 | //
|
|---|
| 122 | verboseLevel = 0;
|
|---|
| 123 | }
|
|---|
| 124 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 125 | //
|
|---|
| 126 | G4EMDissociation::G4EMDissociation (G4ExcitationHandler *aExcitationHandler)
|
|---|
| 127 | {
|
|---|
| 128 | //
|
|---|
| 129 | //
|
|---|
| 130 | // Send message to stdout to advise that the G4EMDissociation model is being
|
|---|
| 131 | // used.
|
|---|
| 132 | //
|
|---|
| 133 | PrintWelcomeMessage();
|
|---|
| 134 |
|
|---|
| 135 | theExcitationHandler = aExcitationHandler;
|
|---|
| 136 | handlerDefinedInternally = false;
|
|---|
| 137 | //
|
|---|
| 138 | //
|
|---|
| 139 | // This EM dissociation model needs access to the cross-sections held in
|
|---|
| 140 | // G4EMDissociationCrossSection.
|
|---|
| 141 | //
|
|---|
| 142 | dissociationCrossSection = new G4EMDissociationCrossSection;
|
|---|
| 143 | thePhotonSpectrum = new G4EMDissociationSpectrum;
|
|---|
| 144 | //
|
|---|
| 145 | //
|
|---|
| 146 | // Set the minimum and maximum range for the model (despite nomanclature, this
|
|---|
| 147 | // is in energy per nucleon number).
|
|---|
| 148 | //
|
|---|
| 149 | SetMinEnergy(100.0*MeV);
|
|---|
| 150 | SetMaxEnergy(500.0*GeV);
|
|---|
| 151 | //
|
|---|
| 152 | //
|
|---|
| 153 | // Set the default verbose level to 0 - no output.
|
|---|
| 154 | //
|
|---|
| 155 | verboseLevel = 0;
|
|---|
| 156 | }
|
|---|
| 157 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 158 | //
|
|---|
| 159 | G4EMDissociation::~G4EMDissociation ()
|
|---|
| 160 | {
|
|---|
| 161 | if (handlerDefinedInternally) delete theExcitationHandler;
|
|---|
| 162 | delete dissociationCrossSection;
|
|---|
| 163 | delete thePhotonSpectrum;
|
|---|
| 164 | }
|
|---|
| 165 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 166 | //
|
|---|
| 167 | G4HadFinalState *G4EMDissociation::ApplyYourself
|
|---|
| 168 | (const G4HadProjectile &theTrack, G4Nucleus &theTarget)
|
|---|
| 169 | {
|
|---|
| 170 | //
|
|---|
| 171 | //
|
|---|
| 172 | // The secondaries will be returned in G4HadFinalState &theParticleChange -
|
|---|
| 173 | // initialise this.
|
|---|
| 174 | //
|
|---|
| 175 | theParticleChange.Clear();
|
|---|
| 176 | theParticleChange.SetStatusChange(stopAndKill);
|
|---|
| 177 | //
|
|---|
| 178 | //
|
|---|
| 179 | // Get relevant information about the projectile and target (A, Z) and
|
|---|
| 180 | // energy/nuc, momentum, velocity, Lorentz factor and rest-mass of the
|
|---|
| 181 | // projectile.
|
|---|
| 182 | //
|
|---|
| 183 | const G4ParticleDefinition *definitionP = theTrack.GetDefinition();
|
|---|
| 184 | const G4double AP = definitionP->GetBaryonNumber();
|
|---|
| 185 | const G4double ZP = definitionP->GetPDGCharge();
|
|---|
| 186 | G4LorentzVector pP = theTrack.Get4Momentum();
|
|---|
| 187 | G4double E = theTrack.GetKineticEnergy()/AP;
|
|---|
| 188 | G4double MP = theTrack.GetTotalEnergy() - E*AP;
|
|---|
| 189 | G4double b = pP.beta();
|
|---|
| 190 | G4double AT = theTarget.GetN();
|
|---|
| 191 | G4double ZT = theTarget.GetZ();
|
|---|
| 192 | G4double MT = G4NucleiProperties::GetNuclearMass(AT,ZT);
|
|---|
| 193 | //
|
|---|
| 194 | //
|
|---|
| 195 | // Depending upon the verbosity level, output the initial information on the
|
|---|
| 196 | // projectile and target.
|
|---|
| 197 | //
|
|---|
| 198 | if (verboseLevel >= 2)
|
|---|
| 199 | {
|
|---|
| 200 | G4cout.precision(6);
|
|---|
| 201 | G4cout <<"########################################"
|
|---|
| 202 | <<"########################################"
|
|---|
| 203 | <<G4endl;
|
|---|
| 204 | G4cout <<"IN G4EMDissociation" <<G4endl;
|
|---|
| 205 | G4cout <<"Initial projectile A=" <<AP
|
|---|
| 206 | <<", Z=" <<ZP
|
|---|
| 207 | <<G4endl;
|
|---|
| 208 | G4cout <<"Initial target A=" <<AT
|
|---|
| 209 | <<", Z=" <<ZT
|
|---|
| 210 | <<G4endl;
|
|---|
| 211 | G4cout <<"Projectile momentum and Energy/nuc = " <<pP <<" ," <<E <<G4endl;
|
|---|
| 212 | }
|
|---|
| 213 | //
|
|---|
| 214 | //
|
|---|
| 215 | // Initialise the variables which will be used with the phase-space decay and
|
|---|
| 216 | // to boost the secondaries from the interaction.
|
|---|
| 217 | //
|
|---|
| 218 | G4ParticleDefinition *typeNucleon = NULL;
|
|---|
| 219 | G4ParticleDefinition *typeDaughter = NULL;
|
|---|
| 220 | G4double Eg = 0.0;
|
|---|
| 221 | G4double mass = 0.0;
|
|---|
| 222 | G4ThreeVector boost = G4ThreeVector(0.0, 0.0, 0.0);
|
|---|
| 223 | //
|
|---|
| 224 | //
|
|---|
| 225 | // Determine the cross-sections at the giant dipole and giant quadrupole
|
|---|
| 226 | // resonance energies for the projectile and then target. The information is
|
|---|
| 227 | // initially provided in the G4PhysicsFreeVector individually for the E1
|
|---|
| 228 | // and E2 fields. These are then summed.
|
|---|
| 229 | //
|
|---|
| 230 | G4double bmin = thePhotonSpectrum->GetClosestApproach(AP, ZP, AT, ZT, b);
|
|---|
| 231 | G4PhysicsFreeVector *crossSectionP = dissociationCrossSection->
|
|---|
| 232 | GetCrossSectionForProjectile(AP, ZP, AT, ZT, b, bmin);
|
|---|
| 233 | G4PhysicsFreeVector *crossSectionT = dissociationCrossSection->
|
|---|
| 234 | GetCrossSectionForTarget(AP, ZP, AT, ZT, b, bmin);
|
|---|
| 235 |
|
|---|
| 236 | G4double totCrossSectionP = (*crossSectionP)[0]+(*crossSectionP)[1];
|
|---|
| 237 | G4double totCrossSectionT = (*crossSectionT)[0]+(*crossSectionT)[1];
|
|---|
| 238 | //
|
|---|
| 239 | //
|
|---|
| 240 | // Now sample whether the interaction involved EM dissociation of the projectile
|
|---|
| 241 | // or the target.
|
|---|
| 242 | //
|
|---|
| 243 | if (G4UniformRand() <
|
|---|
| 244 | totCrossSectionP / (totCrossSectionP + totCrossSectionT))
|
|---|
| 245 | {
|
|---|
| 246 | //
|
|---|
| 247 | //
|
|---|
| 248 | // It was the projectile which underwent EM dissociation. Define the Lorentz
|
|---|
| 249 | // boost to be applied to the secondaries, and sample whether a proton or a
|
|---|
| 250 | // neutron was ejected. Then determine the energy of the virtual gamma ray
|
|---|
| 251 | // which passed from the target nucleus ... this will be used to define the
|
|---|
| 252 | // excitation of the projectile.
|
|---|
| 253 | //
|
|---|
| 254 | mass = MP;
|
|---|
| 255 | if (G4UniformRand() < dissociationCrossSection->
|
|---|
| 256 | GetWilsonProbabilityForProtonDissociation (AP, ZP))
|
|---|
| 257 | {
|
|---|
| 258 | if (verboseLevel >= 2)
|
|---|
| 259 | G4cout <<"Projectile underwent EM dissociation producing a proton"
|
|---|
| 260 | <<G4endl;
|
|---|
| 261 | typeNucleon = G4Proton::ProtonDefinition();
|
|---|
| 262 | typeDaughter = G4ParticleTable::GetParticleTable()->
|
|---|
| 263 | GetIon((G4int) ZP-1, (G4int) AP-1, 0.0);
|
|---|
| 264 | }
|
|---|
| 265 | else
|
|---|
| 266 | {
|
|---|
| 267 | if (verboseLevel >= 2)
|
|---|
| 268 | G4cout <<"Projectile underwent EM dissociation producing a neutron"
|
|---|
| 269 | <<G4endl;
|
|---|
| 270 | typeNucleon = G4Neutron::NeutronDefinition();
|
|---|
| 271 | typeDaughter = G4ParticleTable::GetParticleTable()->
|
|---|
| 272 | GetIon((G4int) ZP, (G4int) AP-1, 0.0);
|
|---|
| 273 | }
|
|---|
| 274 | if (G4UniformRand() < (*crossSectionP)[0]/totCrossSectionP)
|
|---|
| 275 | {
|
|---|
| 276 | Eg = crossSectionP->GetLowEdgeEnergy(0);
|
|---|
| 277 | if (verboseLevel >= 2)
|
|---|
| 278 | G4cout <<"Transition type was E1" <<G4endl;
|
|---|
| 279 | }
|
|---|
| 280 | else
|
|---|
| 281 | {
|
|---|
| 282 | Eg = crossSectionP->GetLowEdgeEnergy(1);
|
|---|
| 283 | if (verboseLevel >= 2)
|
|---|
| 284 | G4cout <<"Transition type was E2" <<G4endl;
|
|---|
| 285 | }
|
|---|
| 286 | //
|
|---|
| 287 | //
|
|---|
| 288 | // We need to define a Lorentz vector with the original momentum, but total
|
|---|
| 289 | // energy includes the projectile and virtual gamma. This is then used
|
|---|
| 290 | // to calculate the boost required for the secondaries.
|
|---|
| 291 | //
|
|---|
| 292 | pP.setE(pP.e()+Eg);
|
|---|
| 293 | boost = pP.findBoostToCM();
|
|---|
| 294 | }
|
|---|
| 295 | else
|
|---|
| 296 | {
|
|---|
| 297 | //
|
|---|
| 298 | //
|
|---|
| 299 | // It was the target which underwent EM dissociation. Sample whether a
|
|---|
| 300 | // proton or a neutron was ejected. Then determine the energy of the virtual
|
|---|
| 301 | // gamma ray which passed from the projectile nucleus ... this will be used to
|
|---|
| 302 | // define the excitation of the target.
|
|---|
| 303 | //
|
|---|
| 304 | mass = MT;
|
|---|
| 305 | if (G4UniformRand() < dissociationCrossSection->
|
|---|
| 306 | GetWilsonProbabilityForProtonDissociation (AT, ZT))
|
|---|
| 307 | {
|
|---|
| 308 | if (verboseLevel >= 2)
|
|---|
| 309 | G4cout <<"Target underwent EM dissociation producing a proton"
|
|---|
| 310 | <<G4endl;
|
|---|
| 311 | typeNucleon = G4Proton::ProtonDefinition();
|
|---|
| 312 | typeDaughter = G4ParticleTable::GetParticleTable()->
|
|---|
| 313 | GetIon((G4int) ZT-1, (G4int) AT-1, 0.0);
|
|---|
| 314 | }
|
|---|
| 315 | else
|
|---|
| 316 | {
|
|---|
| 317 | if (verboseLevel >= 2)
|
|---|
| 318 | G4cout <<"Target underwent EM dissociation producing a neutron"
|
|---|
| 319 | <<G4endl;
|
|---|
| 320 | typeNucleon = G4Neutron::NeutronDefinition();
|
|---|
| 321 | typeDaughter = G4ParticleTable::GetParticleTable()->
|
|---|
| 322 | GetIon((G4int) ZT, (G4int) AT-1, 0.0);
|
|---|
| 323 | }
|
|---|
| 324 | if (G4UniformRand() < (*crossSectionT)[0]/totCrossSectionT)
|
|---|
| 325 | {
|
|---|
| 326 | Eg = crossSectionT->GetLowEdgeEnergy(0);
|
|---|
| 327 | if (verboseLevel >= 2)
|
|---|
| 328 | G4cout <<"Transition type was E1" <<G4endl;
|
|---|
| 329 | }
|
|---|
| 330 | else
|
|---|
| 331 | {
|
|---|
| 332 | Eg = crossSectionT->GetLowEdgeEnergy(1);
|
|---|
| 333 | if (verboseLevel >= 2)
|
|---|
| 334 | G4cout <<"Transition type was E2" <<G4endl;
|
|---|
| 335 | }
|
|---|
| 336 | //
|
|---|
| 337 | //
|
|---|
| 338 | // Add the projectile to theParticleChange, less the energy of the
|
|---|
| 339 | // not-so-virtual gamma-ray. Not that at the moment, no lateral momentum
|
|---|
| 340 | // is transferred between the projectile and target nuclei.
|
|---|
| 341 | //
|
|---|
| 342 | G4ThreeVector v = pP.vect();
|
|---|
| 343 | v.setMag(1.0);
|
|---|
| 344 | G4DynamicParticle *changedP = new G4DynamicParticle
|
|---|
| 345 | (const_cast<G4ParticleDefinition*>(definitionP), v, E*AP-Eg);
|
|---|
| 346 | theParticleChange.AddSecondary (changedP);
|
|---|
| 347 | if (verboseLevel >= 2)
|
|---|
| 348 | {
|
|---|
| 349 | G4cout <<"Projectile change:" <<G4endl;
|
|---|
| 350 | changedP->DumpInfo();
|
|---|
| 351 | }
|
|---|
| 352 | }
|
|---|
| 353 | //
|
|---|
| 354 | //
|
|---|
| 355 | // Perform a two-body decay based on the restmass energy of the parent and
|
|---|
| 356 | // gamma-ray, and the masses of the daughters. In the frame of reference of
|
|---|
| 357 | // the nucles, the angular distribution is sampled isotropically, but the
|
|---|
| 358 | // the nucleon and secondary nucleus are boosted if they've come from the
|
|---|
| 359 | // projectile.
|
|---|
| 360 | //
|
|---|
| 361 | G4double e = mass + Eg;
|
|---|
| 362 | G4double m1 = typeNucleon->GetPDGMass();
|
|---|
| 363 | G4double m2 = typeDaughter->GetPDGMass();
|
|---|
| 364 | G4double pp = (e+m1+m2)*(e+m1-m2)*(e-m1+m2)*(e-m1-m2)/(4.0*e*e);
|
|---|
| 365 | if (pp < 0.0)
|
|---|
| 366 | {
|
|---|
| 367 | pp = 1.0*eV;
|
|---|
| 368 | // if (verboseLevel >`= 1)
|
|---|
| 369 | // {
|
|---|
| 370 | // G4cout <<"IN G4EMDissociation::ApplyYoursef" <<G4endl;
|
|---|
| 371 | // G4cout <<"Error in mass of secondaries compared with primary:" <<G4endl;
|
|---|
| 372 | // G4cout <<"Rest mass of primary = " <<mass <<" MeV" <<G4endl;
|
|---|
| 373 | // G4cout <<"Virtual gamma energy = " <<Eg <<" MeV" <<G4endl;
|
|---|
| 374 | // G4cout <<"Rest mass of secondary #1 = " <<m1 <<" MeV" <<G4endl;
|
|---|
| 375 | // G4cout <<"Rest mass of secondary #2 = " <<m2 <<" MeV" <<G4endl;
|
|---|
| 376 | // }
|
|---|
| 377 | }
|
|---|
| 378 | else
|
|---|
| 379 | pp = std::sqrt(pp);
|
|---|
| 380 | G4double costheta = 2.*G4UniformRand()-1.0;
|
|---|
| 381 | G4double sintheta = std::sqrt((1.0 - costheta)*(1.0 + costheta));
|
|---|
| 382 | G4double phi = 2.0*pi*G4UniformRand()*rad;
|
|---|
| 383 | G4ThreeVector direction(sintheta*std::cos(phi),sintheta*std::sin(phi),costheta);
|
|---|
| 384 | G4DynamicParticle *dynamicNucleon =
|
|---|
| 385 | new G4DynamicParticle(typeNucleon, direction*pp);
|
|---|
| 386 | dynamicNucleon->Set4Momentum(dynamicNucleon->Get4Momentum().boost(-boost));
|
|---|
| 387 | G4DynamicParticle *dynamicDaughter =
|
|---|
| 388 | new G4DynamicParticle(typeDaughter, -direction*pp);
|
|---|
| 389 | dynamicDaughter->Set4Momentum(dynamicDaughter->Get4Momentum().boost(-boost));
|
|---|
| 390 | //
|
|---|
| 391 | //
|
|---|
| 392 | // The "decay" products have to be transferred to the G4HadFinalState object.
|
|---|
| 393 | // Furthermore, the residual nucleus should be de-excited.
|
|---|
| 394 | //
|
|---|
| 395 | theParticleChange.AddSecondary (dynamicNucleon);
|
|---|
| 396 | if (verboseLevel >= 2)
|
|---|
| 397 | {
|
|---|
| 398 | G4cout <<"Nucleon from the EMD process:" <<G4endl;
|
|---|
| 399 | dynamicNucleon->DumpInfo();
|
|---|
| 400 | }
|
|---|
| 401 |
|
|---|
| 402 | G4Fragment *theFragment = new
|
|---|
| 403 | G4Fragment((G4int) typeDaughter->GetBaryonNumber(),
|
|---|
| 404 | (G4int) typeDaughter->GetPDGCharge(), dynamicDaughter->Get4Momentum());
|
|---|
| 405 | if (verboseLevel >= 2)
|
|---|
| 406 | {
|
|---|
| 407 | G4cout <<"Dynamic properties of the prefragment:" <<G4endl;
|
|---|
| 408 | G4cout.precision(6);
|
|---|
| 409 | dynamicDaughter->DumpInfo();
|
|---|
| 410 | G4cout <<"Nuclear properties of the prefragment:" <<G4endl;
|
|---|
| 411 | G4cout <<theFragment <<G4endl;
|
|---|
| 412 | }
|
|---|
| 413 | G4ReactionProductVector *products =
|
|---|
| 414 | theExcitationHandler->BreakItUp(*theFragment);
|
|---|
| 415 | delete theFragment;
|
|---|
| 416 | theFragment = NULL;
|
|---|
| 417 |
|
|---|
| 418 | G4ReactionProductVector::iterator iter;
|
|---|
| 419 | for (iter = products->begin(); iter != products->end(); ++iter)
|
|---|
| 420 | {
|
|---|
| 421 | G4DynamicParticle *secondary =
|
|---|
| 422 | new G4DynamicParticle((*iter)->GetDefinition(),
|
|---|
| 423 | (*iter)->GetTotalEnergy(), (*iter)->GetMomentum());
|
|---|
| 424 | theParticleChange.AddSecondary (secondary);
|
|---|
| 425 | }
|
|---|
| 426 |
|
|---|
| 427 | if (verboseLevel >= 2)
|
|---|
| 428 | G4cout <<"########################################"
|
|---|
| 429 | <<"########################################"
|
|---|
| 430 | <<G4endl;
|
|---|
| 431 |
|
|---|
| 432 | return &theParticleChange;
|
|---|
| 433 | }
|
|---|
| 434 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 435 | //
|
|---|
| 436 | void G4EMDissociation::PrintWelcomeMessage ()
|
|---|
| 437 | {
|
|---|
| 438 | G4cout <<G4endl;
|
|---|
| 439 | G4cout <<" ****************************************************************"
|
|---|
| 440 | <<G4endl;
|
|---|
| 441 | G4cout <<" EM dissociation model for nuclear-nuclear interactions activated"
|
|---|
| 442 | <<G4endl;
|
|---|
| 443 | G4cout <<" (Written by QinetiQ Ltd for the European Space Agency)"
|
|---|
| 444 | <<G4endl;
|
|---|
| 445 | G4cout <<" ****************************************************************"
|
|---|
| 446 | <<G4endl;
|
|---|
| 447 | G4cout << G4endl;
|
|---|
| 448 |
|
|---|
| 449 | return;
|
|---|
| 450 | }
|
|---|
| 451 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 452 | //
|
|---|