source: trunk/source/processes/hadronic/models/high_energy/src/G4HEAntiKaonZeroInelastic.cc@ 1201

Last change on this file since 1201 was 1196, checked in by garnier, 16 years ago

update CVS release candidate geant4.9.3.01

File size: 22.0 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id: G4HEAntiKaonZeroInelastic.cc,v 1.15 2008/03/17 20:49:17 dennis Exp $
28// GEANT4 tag $Name: geant4-09-03-cand-01 $
29//
30//
31
32#include "globals.hh"
33#include "G4ios.hh"
34
35//
36// G4 Process: Gheisha High Energy Collision model.
37// This includes the high energy cascading model, the two-body-resonance model
38// and the low energy two-body model. Not included are the low energy stuff like
39// nuclear reactions, nuclear fission without any cascading and all processes for
40// particles at rest.
41// First work done by J.L.Chuma and F.W.Jones, TRIUMF, June 96.
42// H. Fesefeldt, RWTH-Aachen, 23-October-1996
43// Last modified: 29-July-1998
44
45#include "G4HEAntiKaonZeroInelastic.hh"
46
47G4HadFinalState * G4HEAntiKaonZeroInelastic::
48ApplyYourself( const G4HadProjectile &aTrack, G4Nucleus &targetNucleus )
49 {
50 G4HEVector * pv = new G4HEVector[MAXPART];
51 const G4HadProjectile *aParticle = &aTrack;
52// G4DynamicParticle *originalTarget = targetNucleus.ReturnTargetParticle();
53 const G4double atomicWeight = targetNucleus.GetN();
54 const G4double atomicNumber = targetNucleus.GetZ();
55 G4HEVector incidentParticle(aParticle);
56
57 G4int incidentCode = incidentParticle.getCode();
58 G4double incidentMass = incidentParticle.getMass();
59 G4double incidentTotalEnergy = incidentParticle.getEnergy();
60 G4double incidentTotalMomentum = incidentParticle.getTotalMomentum();
61 G4double incidentKineticEnergy = incidentTotalEnergy - incidentMass;
62
63 if(incidentKineticEnergy < 1.)
64 {
65 G4cout << "GHEAntiKaonZeroInelastic: incident energy < 1 GeV" << G4endl;
66 }
67 if(verboseLevel > 1)
68 {
69 G4cout << "G4HEAntiKaonZeroInelastic::ApplyYourself" << G4endl;
70 G4cout << "incident particle " << incidentParticle.getName()
71 << "mass " << incidentMass
72 << "kinetic energy " << incidentKineticEnergy
73 << G4endl;
74 G4cout << "target material with (A,Z) = ("
75 << atomicWeight << "," << atomicNumber << ")" << G4endl;
76 }
77
78 G4double inelasticity = NuclearInelasticity(incidentKineticEnergy,
79 atomicWeight, atomicNumber);
80 if(verboseLevel > 1)
81 G4cout << "nuclear inelasticity = " << inelasticity << G4endl;
82
83 incidentKineticEnergy -= inelasticity;
84
85 G4double excitationEnergyGNP = 0.;
86 G4double excitationEnergyDTA = 0.;
87
88 G4double excitation = NuclearExcitation(incidentKineticEnergy,
89 atomicWeight, atomicNumber,
90 excitationEnergyGNP,
91 excitationEnergyDTA);
92 if(verboseLevel > 1)
93 G4cout << "nuclear excitation = " << excitation << excitationEnergyGNP
94 << excitationEnergyDTA << G4endl;
95
96
97 incidentKineticEnergy -= excitation;
98 incidentTotalEnergy = incidentKineticEnergy + incidentMass;
99 incidentTotalMomentum = std::sqrt( (incidentTotalEnergy-incidentMass)
100 *(incidentTotalEnergy+incidentMass));
101
102
103 G4HEVector targetParticle;
104 if(G4UniformRand() < atomicNumber/atomicWeight)
105 {
106 targetParticle.setDefinition("Proton");
107 }
108 else
109 {
110 targetParticle.setDefinition("Neutron");
111 }
112
113 G4double targetMass = targetParticle.getMass();
114 G4double centerOfMassEnergy = std::sqrt( incidentMass*incidentMass + targetMass*targetMass
115 + 2.0*targetMass*incidentTotalEnergy);
116 G4double availableEnergy = centerOfMassEnergy - targetMass - incidentMass;
117
118 // this was the meaning of inElastic in the
119 // original Gheisha stand-alone version.
120// G4bool inElastic = InElasticCrossSectionInFirstInt
121// (availableEnergy, incidentCode, incidentTotalMomentum);
122 // by unknown reasons, it has been replaced
123 // to the following code in Geant???
124 G4bool inElastic = true;
125// if (G4UniformRand() < elasticCrossSection/totalCrossSection) inElastic = false;
126
127 vecLength = 0;
128
129 if(verboseLevel > 1)
130 G4cout << "ApplyYourself: CallFirstIntInCascade for particle "
131 << incidentCode << G4endl;
132
133 G4bool successful = false;
134
135 if(inElastic || (!inElastic && atomicWeight < 1.5))
136 {
137 FirstIntInCasAntiKaonZero(inElastic, availableEnergy, pv, vecLength,
138 incidentParticle, targetParticle );
139
140 if(verboseLevel > 1)
141 G4cout << "ApplyYourself::StrangeParticlePairProduction" << G4endl;
142
143
144 if ((vecLength > 0) && (availableEnergy > 1.))
145 StrangeParticlePairProduction( availableEnergy, centerOfMassEnergy,
146 pv, vecLength,
147 incidentParticle, targetParticle);
148 HighEnergyCascading( successful, pv, vecLength,
149 excitationEnergyGNP, excitationEnergyDTA,
150 incidentParticle, targetParticle,
151 atomicWeight, atomicNumber);
152 if (!successful)
153 HighEnergyClusterProduction( successful, pv, vecLength,
154 excitationEnergyGNP, excitationEnergyDTA,
155 incidentParticle, targetParticle,
156 atomicWeight, atomicNumber);
157 if (!successful)
158 MediumEnergyCascading( successful, pv, vecLength,
159 excitationEnergyGNP, excitationEnergyDTA,
160 incidentParticle, targetParticle,
161 atomicWeight, atomicNumber);
162
163 if (!successful)
164 MediumEnergyClusterProduction( successful, pv, vecLength,
165 excitationEnergyGNP, excitationEnergyDTA,
166 incidentParticle, targetParticle,
167 atomicWeight, atomicNumber);
168 if (!successful)
169 QuasiElasticScattering( successful, pv, vecLength,
170 excitationEnergyGNP, excitationEnergyDTA,
171 incidentParticle, targetParticle,
172 atomicWeight, atomicNumber);
173 }
174 if (!successful)
175 {
176 ElasticScattering( successful, pv, vecLength,
177 incidentParticle,
178 atomicWeight, atomicNumber);
179 }
180
181 if (!successful)
182 {
183 G4cout << "GHEInelasticInteraction::ApplyYourself fails to produce final state particles" << G4endl;
184 }
185 FillParticleChange(pv, vecLength);
186 delete [] pv;
187 theParticleChange.SetStatusChange(stopAndKill);
188 return & theParticleChange;
189 }
190
191void
192G4HEAntiKaonZeroInelastic::FirstIntInCasAntiKaonZero( G4bool &inElastic,
193 const G4double availableEnergy,
194 G4HEVector pv[],
195 G4int &vecLen,
196 G4HEVector incidentParticle,
197 G4HEVector targetParticle )
198
199// AntiKaon0 undergoes interaction with nucleon within a nucleus. Check if it is
200// energetically possible to produce pions/kaons. In not, assume nuclear excitation
201// occurs and input particle is degraded in energy. No other particles are produced.
202// If reaction is possible, find the correct number of pions/protons/neutrons
203// produced using an interpolation to multiplicity data. Replace some pions or
204// protons/neutrons by kaons or strange baryons according to the average
205// multiplicity per inelastic reaction.
206
207 {
208 static const G4double expxu = std::log(MAXFLOAT); // upper bound for arg. of exp
209 static const G4double expxl = -expxu; // lower bound for arg. of exp
210
211 static const G4double protb = 0.7;
212 static const G4double neutb = 0.7;
213 static const G4double c = 1.25;
214
215 static const G4int numMul = 1200;
216 static const G4int numSec = 60;
217
218 G4int neutronCode = Neutron.getCode();
219 G4int protonCode = Proton.getCode();
220 G4int kaonMinusCode = KaonMinus.getCode();
221 G4int kaonZeroCode = KaonZero.getCode();
222 G4int antiKaonZeroCode = AntiKaonZero.getCode();
223
224 G4int targetCode = targetParticle.getCode();
225// G4double incidentMass = incidentParticle.getMass();
226// G4double incidentEnergy = incidentParticle.getEnergy();
227 G4double incidentTotalMomentum = incidentParticle.getTotalMomentum();
228
229 static G4bool first = true;
230 static G4double protmul[numMul], protnorm[numSec]; // proton constants
231 static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
232
233// misc. local variables
234// np = number of pi+, nm = number of pi-, nz = number of pi0
235
236 G4int i, counter, nt, np, nm, nz;
237
238 if( first )
239 { // compute normalization constants, this will only be done once
240 first = false;
241 for( i=0; i<numMul; i++ )protmul[i] = 0.0;
242 for( i=0; i<numSec; i++ )protnorm[i] = 0.0;
243 counter = -1;
244 for( np=0; np<(numSec/3); np++ )
245 {
246 for( nm=std::max(0,np-2); nm<=np; nm++ )
247 {
248 for( nz=0; nz<numSec/3; nz++ )
249 {
250 if( ++counter < numMul )
251 {
252 nt = np+nm+nz;
253 if( (nt>0) && (nt<=numSec) )
254 {
255 protmul[counter] =
256 pmltpc(np,nm,nz,nt,protb,c) ;
257 protnorm[nt-1] += protmul[counter];
258 }
259 }
260 }
261 }
262 }
263 for( i=0; i<numMul; i++ )neutmul[i] = 0.0;
264 for( i=0; i<numSec; i++ )neutnorm[i] = 0.0;
265 counter = -1;
266 for( np=0; np<numSec/3; np++ )
267 {
268 for( nm=std::max(0,np-1); nm<=(np+1); nm++ )
269 {
270 for( nz=0; nz<numSec/3; nz++ )
271 {
272 if( ++counter < numMul )
273 {
274 nt = np+nm+nz;
275 if( (nt>0) && (nt<=numSec) )
276 {
277 neutmul[counter] =
278 pmltpc(np,nm,nz,nt,neutb,c);
279 neutnorm[nt-1] += neutmul[counter];
280 }
281 }
282 }
283 }
284 }
285 for( i=0; i<numSec; i++ )
286 {
287 if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
288 if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
289 }
290 } // end of initialization
291
292
293 // initialize the first two places
294 // the same as beam and target
295 pv[0] = incidentParticle;
296 pv[1] = targetParticle;
297 vecLen = 2;
298
299 if (!inElastic || (availableEnergy <= PionPlus.getMass()))
300 return;
301
302
303// inelastic scattering
304
305 np = 0, nm = 0, nz = 0;
306 G4double cech[] = { 1., 1., 1., 0.70, 0.60, 0.55, 0.35, 0.25, 0.18, 0.15};
307 G4int iplab = G4int( incidentTotalMomentum*5.);
308 if( (iplab < 10) && (G4UniformRand() < cech[iplab]) )
309 {
310 G4int iplab = std::min(19, G4int( incidentTotalMomentum*5.));
311 G4double cnk0[] = {0.17, 0.18, 0.17, 0.24, 0.26, 0.20, 0.22, 0.21, 0.34, 0.45,
312 0.58, 0.55, 0.36, 0.29, 0.29, 0.32, 0.32, 0.33, 0.33, 0.33};
313 if( G4UniformRand() < cnk0[iplab] )
314 {
315 if( targetCode == protonCode )
316 {
317 return;
318 }
319 else
320 {
321 pv[0] = KaonMinus;
322 pv[1] = Proton;
323 return;
324 }
325 }
326 G4double ran = G4UniformRand();
327 if( targetCode == protonCode ) // target is a proton
328 {
329 if( ran < 0.25 )
330 {
331 }
332 else if (ran < 0.50)
333 {
334 pv[0] = PionPlus;
335 pv[1] = SigmaZero;
336 }
337 else if (ran < 0.75)
338 {
339 }
340 else
341 {
342 pv[0] = PionPlus;
343 pv[1] = Lambda;
344 }
345 }
346 else
347 { // target is a neutron
348 if( ran < 0.25 )
349 {
350 pv[0] = PionMinus;
351 pv[1] = SigmaPlus;
352 }
353 else if (ran < 0.50)
354 {
355 pv[0] = PionZero;
356 pv[1] = SigmaZero;
357 }
358 else if (ran < 0.75)
359 {
360 pv[0] = PionPlus;
361 pv[1] = SigmaMinus;
362 }
363 else
364 {
365 pv[0] = PionZero;
366 pv[1] = Lambda;
367 }
368 }
369 return;
370 }
371 else
372 {
373// number of total particles vs. centre of mass Energy - 2*proton mass
374
375 G4double aleab = std::log(availableEnergy);
376 G4double n = 3.62567+aleab*(0.665843+aleab*(0.336514
377 + aleab*(0.117712+0.0136912*aleab))) - 2.0;
378
379// normalization constant for kno-distribution.
380// calculate first the sum of all constants, check for numerical problems.
381 G4double test, dum, anpn = 0.0;
382
383 for (nt=1; nt<=numSec; nt++) {
384 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
385 dum = pi*nt/(2.0*n*n);
386 if (std::fabs(dum) < 1.0) {
387 if( test >= 1.0e-10 )anpn += dum*test;
388 } else {
389 anpn += dum*test;
390 }
391 }
392
393 G4double ran = G4UniformRand();
394 G4double excs = 0.0;
395 if (targetCode == protonCode) {
396 counter = -1;
397 for (np=0; np<numSec/3; np++) {
398 for (nm=std::max(0,np-2); nm<=np; nm++) {
399 for (nz=0; nz<numSec/3; nz++) {
400 if (++counter < numMul) {
401 nt = np+nm+nz;
402 if( (nt>0) && (nt<=numSec) ) {
403 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
404 dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
405
406 if (std::fabs(dum) < 1.0) {
407 if( test >= 1.0e-10 )excs += dum*test;
408 } else {
409 excs += dum*test;
410 }
411
412 if (ran < excs) goto outOfLoop; //----------------------->
413 }
414 }
415 }
416 }
417 }
418 // 3 previous loops continued to the end
419 inElastic = false; // quasi-elastic scattering
420 return;
421
422 } else { // target must be a neutron
423 counter = -1;
424 for (np=0; np<numSec/3; np++) {
425 for (nm=std::max(0,np-1); nm<=(np+1); nm++) {
426 for (nz=0; nz<numSec/3; nz++) {
427 if (++counter < numMul) {
428 nt = np+nm+nz;
429 if( (nt>=1) && (nt<=numSec) ) {
430 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
431 dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
432
433 if (std::fabs(dum) < 1.0) {
434 if( test >= 1.0e-10 )excs += dum*test;
435 } else {
436 excs += dum*test;
437 }
438
439 if (ran < excs) goto outOfLoop; // -------------------------->
440 }
441 }
442 }
443 }
444 }
445 // 3 previous loops continued to the end
446 inElastic = false; // quasi-elastic scattering.
447 return;
448 }
449 }
450 outOfLoop: // <------------------------------------------------------------------------
451
452 if( targetCode == protonCode)
453 {
454 if( np == nm)
455 {
456 }
457 else if (np == (1+nm))
458 {
459 if( G4UniformRand() < 0.5)
460 {
461 pv[0] = KaonMinus;
462 }
463 else
464 {
465 pv[1] = Neutron;
466 }
467 }
468 else
469 {
470 pv[0] = KaonMinus;
471 pv[1] = Neutron;
472 }
473 }
474 else
475 {
476 if( np == nm)
477 {
478 if( G4UniformRand() < 0.75)
479 {
480 }
481 else
482 {
483 pv[0] = KaonMinus;
484 pv[1] = Proton;
485 }
486 }
487 else if ( np == (1+nm))
488 {
489 pv[0] = KaonMinus;
490 }
491 else
492 {
493 pv[1] = Proton;
494 }
495 }
496
497
498 if( G4UniformRand() < 0.5 )
499 {
500 if( ( (pv[0].getCode() == kaonMinusCode)
501 && (pv[1].getCode() == neutronCode) )
502 || ( (pv[0].getCode() == kaonZeroCode)
503 && (pv[1].getCode() == protonCode) )
504 || ( (pv[0].getCode() == antiKaonZeroCode)
505 && (pv[1].getCode() == protonCode) ) )
506 {
507 G4double ran = G4UniformRand();
508 if( pv[1].getCode() == protonCode)
509 {
510 if(ran < 0.68)
511 {
512 pv[0] = PionPlus;
513 pv[1] = Lambda;
514 }
515 else if (ran < 0.84)
516 {
517 pv[0] = PionZero;
518 pv[1] = SigmaPlus;
519 }
520 else
521 {
522 pv[0] = PionPlus;
523 pv[1] = SigmaZero;
524 }
525 }
526 else
527 {
528 if(ran < 0.68)
529 {
530 pv[0] = PionMinus;
531 pv[1] = Lambda;
532 }
533 else if (ran < 0.84)
534 {
535 pv[0] = PionMinus;
536 pv[1] = SigmaZero;
537 }
538 else
539 {
540 pv[0] = PionZero;
541 pv[1] = SigmaMinus;
542 }
543 }
544 }
545 else
546 {
547 G4double ran = G4UniformRand();
548 if (ran < 0.67)
549 {
550 pv[0] = PionZero;
551 pv[1] = Lambda;
552 }
553 else if (ran < 0.78)
554 {
555 pv[0] = PionMinus;
556 pv[1] = SigmaPlus;
557 }
558 else if (ran < 0.89)
559 {
560 pv[0] = PionZero;
561 pv[1] = SigmaZero;
562 }
563 else
564 {
565 pv[0] = PionPlus;
566 pv[1] = SigmaMinus;
567 }
568 }
569 }
570
571
572 nt = np + nm + nz;
573 while ( nt > 0)
574 {
575 G4double ran = G4UniformRand();
576 if ( ran < (G4double)np/nt)
577 {
578 if( np > 0 )
579 { pv[vecLen++] = PionPlus;
580 np--;
581 }
582 }
583 else if ( ran < (G4double)(np+nm)/nt)
584 {
585 if( nm > 0 )
586 {
587 pv[vecLen++] = PionMinus;
588 nm--;
589 }
590 }
591 else
592 {
593 if( nz > 0 )
594 {
595 pv[vecLen++] = PionZero;
596 nz--;
597 }
598 }
599 nt = np + nm + nz;
600 }
601 if (verboseLevel > 1)
602 {
603 G4cout << "Particles produced: " ;
604 G4cout << pv[0].getName() << " " ;
605 G4cout << pv[1].getName() << " " ;
606 for (i=2; i < vecLen; i++)
607 {
608 G4cout << pv[i].getName() << " " ;
609 }
610 G4cout << G4endl;
611 }
612 return;
613 }
614
615
616
617
618
619
620
Note: See TracBrowser for help on using the repository browser.