source: trunk/source/processes/hadronic/models/high_energy/src/G4HEAntiProtonInelastic.cc@ 1036

Last change on this file since 1036 was 1007, checked in by garnier, 17 years ago

update to geant4.9.2

File size: 27.4 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id: G4HEAntiProtonInelastic.cc,v 1.14 2008/03/17 20:49:17 dennis Exp $
28// GEANT4 tag $Name: geant4-09-02 $
29//
30//
31
32#include "globals.hh"
33#include "G4ios.hh"
34
35//
36// G4 Process: Gheisha High Energy Collision model.
37// This includes the high energy cascading model, the two-body-resonance model
38// and the low energy two-body model. Not included are the low energy stuff like
39// nuclear reactions, nuclear fission without any cascading and all processes for
40// particles at rest.
41// First work done by J.L.Chuma and F.W.Jones, TRIUMF, June 96.
42// H. Fesefeldt, RWTH-Aachen, 23-October-1996
43// Last modified: 29-July-1998
44
45#include "G4HEAntiProtonInelastic.hh"
46
47G4HadFinalState * G4HEAntiProtonInelastic::
48ApplyYourself( const G4HadProjectile &aTrack, G4Nucleus &targetNucleus )
49 {
50 G4HEVector * pv = new G4HEVector[MAXPART];
51 const G4HadProjectile *aParticle = &aTrack;
52// G4DynamicParticle *originalTarget = targetNucleus.ReturnTargetParticle();
53 const G4double atomicWeight = targetNucleus.GetN();
54 const G4double atomicNumber = targetNucleus.GetZ();
55 G4HEVector incidentParticle(aParticle);
56
57 G4int incidentCode = incidentParticle.getCode();
58 G4double incidentMass = incidentParticle.getMass();
59 G4double incidentTotalEnergy = incidentParticle.getEnergy();
60 G4double incidentTotalMomentum = incidentParticle.getTotalMomentum();
61 G4double incidentKineticEnergy = incidentTotalEnergy - incidentMass;
62
63 if(incidentKineticEnergy < 1.)
64 {
65 G4cout << "GHEAntiProtonInelastic: incident energy < 1 GeV" << G4endl;
66 }
67 if(verboseLevel > 1)
68 {
69 G4cout << "G4HEAntiProtonInelastic::ApplyYourself" << G4endl;
70 G4cout << "incident particle " << incidentParticle.getName()
71 << "mass " << incidentMass
72 << "kinetic energy " << incidentKineticEnergy
73 << G4endl;
74 G4cout << "target material with (A,Z) = ("
75 << atomicWeight << "," << atomicNumber << ")" << G4endl;
76 }
77
78 G4double inelasticity = NuclearInelasticity(incidentKineticEnergy,
79 atomicWeight, atomicNumber);
80 if(verboseLevel > 1)
81 G4cout << "nuclear inelasticity = " << inelasticity << G4endl;
82
83
84 incidentKineticEnergy -= inelasticity;
85
86 G4double excitationEnergyGNP = 0.;
87 G4double excitationEnergyDTA = 0.;
88
89 G4double excitation = NuclearExcitation(incidentKineticEnergy,
90 atomicWeight, atomicNumber,
91 excitationEnergyGNP,
92 excitationEnergyDTA);
93 if(verboseLevel > 1)
94 G4cout << "nuclear excitation = " << excitation << excitationEnergyGNP
95 << excitationEnergyDTA << G4endl;
96
97
98 incidentKineticEnergy -= excitation;
99 incidentTotalEnergy = incidentKineticEnergy + incidentMass;
100 incidentTotalMomentum = std::sqrt( (incidentTotalEnergy-incidentMass)
101 *(incidentTotalEnergy+incidentMass));
102
103 G4HEVector targetParticle;
104 if(G4UniformRand() < atomicNumber/atomicWeight)
105 {
106 targetParticle.setDefinition("Proton");
107 }
108 else
109 {
110 targetParticle.setDefinition("Neutron");
111 }
112
113 G4double targetMass = targetParticle.getMass();
114 G4double centerOfMassEnergy = std::sqrt( incidentMass*incidentMass + targetMass*targetMass
115 + 2.0*targetMass*incidentTotalEnergy);
116 G4double availableEnergy = centerOfMassEnergy - targetMass - incidentMass;
117
118 // this was the meaning of inElastic in the
119 // original Gheisha stand-alone version.
120// G4bool inElastic = InElasticCrossSectionInFirstInt
121// (availableEnergy, incidentCode, incidentTotalMomentum);
122 // by unknown reasons, it has been replaced
123 // to the following code in Geant???
124 G4bool inElastic = true;
125// if (G4UniformRand() < elasticCrossSection/totalCrossSection) inElastic = false;
126
127 vecLength = 0;
128
129 if(verboseLevel > 1)
130 G4cout << "ApplyYourself: CallFirstIntInCascade for particle "
131 << incidentCode << G4endl;
132
133 G4bool successful = false;
134
135 if(inElastic || (!inElastic && atomicWeight < 1.5))
136 {
137 FirstIntInCasAntiProton(inElastic, availableEnergy, pv, vecLength,
138 incidentParticle, targetParticle, atomicWeight);
139
140 if(verboseLevel > 1)
141 G4cout << "ApplyYourself::StrangeParticlePairProduction" << G4endl;
142
143
144 if ((vecLength > 0) && (availableEnergy > 1.))
145 StrangeParticlePairProduction( availableEnergy, centerOfMassEnergy,
146 pv, vecLength,
147 incidentParticle, targetParticle);
148 HighEnergyCascading( successful, pv, vecLength,
149 excitationEnergyGNP, excitationEnergyDTA,
150 incidentParticle, targetParticle,
151 atomicWeight, atomicNumber);
152 if (!successful)
153 HighEnergyClusterProduction( successful, pv, vecLength,
154 excitationEnergyGNP, excitationEnergyDTA,
155 incidentParticle, targetParticle,
156 atomicWeight, atomicNumber);
157 if (!successful)
158 MediumEnergyCascading( successful, pv, vecLength,
159 excitationEnergyGNP, excitationEnergyDTA,
160 incidentParticle, targetParticle,
161 atomicWeight, atomicNumber);
162
163 if (!successful)
164 MediumEnergyClusterProduction( successful, pv, vecLength,
165 excitationEnergyGNP, excitationEnergyDTA,
166 incidentParticle, targetParticle,
167 atomicWeight, atomicNumber);
168 if (!successful)
169 QuasiElasticScattering( successful, pv, vecLength,
170 excitationEnergyGNP, excitationEnergyDTA,
171 incidentParticle, targetParticle,
172 atomicWeight, atomicNumber);
173 }
174 if (!successful)
175 {
176 ElasticScattering( successful, pv, vecLength,
177 incidentParticle,
178 atomicWeight, atomicNumber);
179 }
180
181 if (!successful)
182 {
183 G4cout << "GHEInelasticInteraction::ApplyYourself fails to produce final state particles" << G4endl;
184 }
185 FillParticleChange(pv, vecLength);
186 delete [] pv;
187 theParticleChange.SetStatusChange(stopAndKill);
188 return & theParticleChange;
189 }
190
191void
192G4HEAntiProtonInelastic::FirstIntInCasAntiProton( G4bool &inElastic,
193 const G4double availableEnergy,
194 G4HEVector pv[],
195 G4int &vecLen,
196 G4HEVector incidentParticle,
197 G4HEVector targetParticle,
198 const G4double atomicWeight)
199
200// AntiProton undergoes interaction with nucleon within a nucleus. Check if it is
201// energetically possible to produce pions/kaons. In not, assume nuclear excitation
202// occurs and input particle is degraded in energy. No other particles are produced.
203// If reaction is possible, find the correct number of pions/protons/neutrons
204// produced using an interpolation to multiplicity data. Replace some pions or
205// protons/neutrons by kaons or strange baryons according to the average
206// multiplicity per inelastic reaction.
207
208 {
209 static const G4double expxu = std::log(MAXFLOAT); // upper bound for arg. of exp
210 static const G4double expxl = -expxu; // lower bound for arg. of exp
211
212 static const G4double protb = 0.7;
213 static const G4double neutb = 0.7;
214 static const G4double c = 1.25;
215
216 static const G4int numMul = 1200;
217 static const G4int numMulAn = 400;
218 static const G4int numSec = 60;
219
220 G4int neutronCode = Neutron.getCode();
221 G4int protonCode = Proton.getCode();
222
223 G4int targetCode = targetParticle.getCode();
224// G4double incidentMass = incidentParticle.getMass();
225// G4double incidentEnergy = incidentParticle.getEnergy();
226 G4double incidentTotalMomentum = incidentParticle.getTotalMomentum();
227
228 static G4bool first = true;
229 static G4double protmul[numMul], protnorm[numSec]; // proton constants
230 static G4double protmulAn[numMulAn],protnormAn[numSec];
231 static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
232 static G4double neutmulAn[numMulAn],neutnormAn[numSec];
233
234 // misc. local variables
235 // np = number of pi+, nm = number of pi-, nz = number of pi0
236
237 G4int i, counter, nt, np, nm, nz;
238
239 if( first )
240 { // compute normalization constants, this will only be done once
241 first = false;
242 for( i=0; i<numMul ; i++ ) protmul[i] = 0.0;
243 for( i=0; i<numSec ; i++ ) protnorm[i] = 0.0;
244 counter = -1;
245 for( np=0; np<(numSec/3); np++ )
246 {
247 for( nm=Imax(0,np-1); nm<=(np+1); nm++ )
248 {
249 for( nz=0; nz<numSec/3; nz++ )
250 {
251 if( ++counter < numMul )
252 {
253 nt = np+nm+nz;
254 if( (nt>0) && (nt<=numSec) )
255 {
256 protmul[counter] = pmltpc(np,nm,nz,nt,protb,c);
257 protnorm[nt-1] += protmul[counter];
258 }
259 }
260 }
261 }
262 }
263 for( i=0; i<numMul; i++ )neutmul[i] = 0.0;
264
265 for( i=0; i<numSec; i++ )neutnorm[i] = 0.0;
266 counter = -1;
267 for( np=0; np<numSec/3; np++ )
268 {
269 for( nm=np; nm<=(np+2); nm++ )
270 {
271 for( nz=0; nz<numSec/3; nz++ )
272 {
273 if( ++counter < numMul )
274 {
275 nt = np+nm+nz;
276 if( (nt>0) && (nt<=numSec) )
277 {
278 neutmul[counter] = pmltpc(np,nm,nz,nt,neutb,c);
279 neutnorm[nt-1] += neutmul[counter];
280 }
281 }
282 }
283 }
284 }
285 for( i=0; i<numSec; i++ )
286 {
287 if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
288 if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
289 }
290 // annihilation
291 for( i=0; i<numMulAn ; i++ ) protmulAn[i] = 0.0;
292 for( i=0; i<numSec ; i++ ) protnormAn[i] = 0.0;
293 counter = -1;
294 for( np=1; np<(numSec/3); np++ )
295 {
296 nm = np;
297 for( nz=0; nz<numSec/3; nz++ )
298 {
299 if( ++counter < numMulAn )
300 {
301 nt = np+nm+nz;
302 if( (nt>0) && (nt<=numSec) )
303 {
304 protmulAn[counter] = pmltpc(np,nm,nz,nt,protb,c);
305 protnormAn[nt-1] += protmulAn[counter];
306 }
307 }
308 }
309 }
310 for( i=0; i<numMulAn; i++ ) neutmulAn[i] = 0.0;
311 for( i=0; i<numSec; i++ ) neutnormAn[i] = 0.0;
312 counter = -1;
313 for( np=1; np<numSec/3; np++ )
314 {
315 nm = np+1;
316 for( nz=0; nz<numSec/3; nz++ )
317 {
318 if( ++counter < numMulAn )
319 {
320 nt = np+nm+nz;
321 if( (nt>0) && (nt<=numSec) )
322 {
323 neutmulAn[counter] = pmltpc(np,nm,nz,nt,neutb,c);
324 neutnormAn[nt-1] += neutmulAn[counter];
325 }
326 }
327 }
328 }
329 for( i=0; i<numSec; i++ )
330 {
331 if( protnormAn[i] > 0.0 )protnormAn[i] = 1.0/protnormAn[i];
332 if( neutnormAn[i] > 0.0 )neutnormAn[i] = 1.0/neutnormAn[i];
333 }
334 } // end of initialization
335
336
337 // initialize the first two places
338 // the same as beam and target
339 pv[0] = incidentParticle;
340 pv[1] = targetParticle;
341 vecLen = 2;
342
343 if( !inElastic )
344 { // pb p --> nb n
345 if( targetCode == protonCode )
346 {
347 G4double cech[] = {0.14, 0.170, 0.180, 0.180, 0.180, 0.170, 0.170, 0.160, 0.155, 0.145,
348 0.11, 0.082, 0.065, 0.050, 0.041, 0.035, 0.028, 0.024, 0.010, 0.000};
349
350 G4int iplab = G4int( incidentTotalMomentum*10.);
351 if (iplab > 9) iplab = Imin(19, G4int( incidentTotalMomentum) + 9);
352 if( G4UniformRand() < cech[iplab]/std::pow(atomicWeight,0.42) )
353 { // charge exchange pi+ n -> pi0 p
354 pv[0] = AntiNeutron;
355 pv[1] = Neutron;
356 }
357 }
358 return;
359 }
360 else if (availableEnergy <= PionPlus.getMass())
361 return;
362
363 // inelastic scattering
364
365 np = 0; nm = 0; nz = 0;
366 G4double anhl[] = {1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 0.90,
367 0.60, 0.52, 0.47, 0.44, 0.41, 0.39, 0.37, 0.35, 0.34, 0.24,
368 0.19, 0.15, 0.12, 0.10, 0.09, 0.07, 0.06, 0.05, 0.00};
369 G4int iplab = G4int( incidentTotalMomentum*10.);
370 if ( iplab > 9) iplab = 9 + G4int( incidentTotalMomentum);
371 if ( iplab > 18) iplab = 18 + G4int( incidentTotalMomentum*10.);
372 iplab = Imin(28, iplab);
373
374 if ( G4UniformRand() > anhl[iplab] )
375 {
376
377 G4double eab = availableEnergy;
378 G4int ieab = G4int( eab*5.0 );
379
380 G4double supp[] = {0., 0.4, 0.55, 0.65, 0.75, 0.82, 0.86, 0.90, 0.94, 0.98};
381 if( (ieab <= 9) && (G4UniformRand() >= supp[ieab]) )
382 {
383 // suppress high multiplicity events at low momentum
384 // only one additional pion will be produced
385 G4double w0, wp, wm, wt, ran;
386 if( targetCode == neutronCode ) // target is a neutron
387 {
388 w0 = - sqr(1.+neutb)/(2.*c*c);
389 w0 = std::exp(w0);
390 wm = - sqr(-1.+neutb)/(2.*c*c);
391 wm = std::exp(wm);
392 if( G4UniformRand() < w0/(w0+wm) )
393 { np = 0; nm = 0; nz = 1; }
394 else
395 { np = 0; nm = 1; nz = 0; }
396 }
397 else
398 { // target is a proton
399 w0 = -sqr(1.+protb)/(2.*c*c);
400 w0 = std::exp(w0);
401 wp = w0;
402 wm = -sqr(-1.+protb)/(2.*c*c);
403 wm = std::exp(wm);
404 wt = w0+wp+wm;
405 wp = w0+wp;
406 ran = G4UniformRand();
407 if( ran < w0/wt)
408 { np = 0; nm = 0; nz = 1; }
409 else if( ran < wp/wt)
410 { np = 1; nm = 0; nz = 0; }
411 else
412 { np = 0; nm = 1; nz = 0; }
413 }
414 }
415 else
416 {
417 // number of total particles vs. centre of mass Energy - 2*proton mass
418
419 G4double aleab = std::log(availableEnergy);
420 G4double n = 3.62567+aleab*(0.665843+aleab*(0.336514
421 + aleab*(0.117712+0.0136912*aleab))) - 2.0;
422
423 // normalization constant for kno-distribution.
424 // calculate first the sum of all constants, check for numerical problems.
425 G4double test, dum, anpn = 0.0;
426
427 for (nt=1; nt<=numSec; nt++) {
428 test = std::exp( Amin( expxu, Amax( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
429 dum = pi*nt/(2.0*n*n);
430 if (std::fabs(dum) < 1.0) {
431 if( test >= 1.0e-10 )anpn += dum*test;
432 } else {
433 anpn += dum*test;
434 }
435 }
436
437 G4double ran = G4UniformRand();
438 G4double excs = 0.0;
439 if( targetCode == protonCode )
440 {
441 counter = -1;
442 for( np=0; np<numSec/3; np++ )
443 {
444 for( nm=Imax(0,np-1); nm<=(np+1); nm++ )
445 {
446 for( nz=0; nz<numSec/3; nz++ )
447 {
448 if( ++counter < numMul )
449 {
450 nt = np+nm+nz;
451 if ( (nt>0) && (nt<=numSec) ) {
452 test = std::exp( Amin( expxu, Amax( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
453 dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
454 if (std::fabs(dum) < 1.0) {
455 if( test >= 1.0e-10 )excs += dum*test;
456 } else {
457 excs += dum*test;
458 }
459
460 if (ran < excs) goto outOfLoop; //----------------------->
461 }
462 }
463 }
464 }
465 }
466
467 // 3 previous loops continued to the end
468 inElastic = false; // quasi-elastic scattering
469 return;
470 }
471 else
472 { // target must be a neutron
473 counter = -1;
474 for( np=0; np<numSec/3; np++ )
475 {
476 for( nm=np; nm<=(np+2); nm++ )
477 {
478 for( nz=0; nz<numSec/3; nz++ )
479 {
480 if( ++counter < numMul )
481 {
482 nt = np+nm+nz;
483 if ( (nt>=1) && (nt<=numSec) ) {
484 test = std::exp( Amin( expxu, Amax( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
485 dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
486 if (std::fabs(dum) < 1.0) {
487 if( test >= 1.0e-10 )excs += dum*test;
488 } else {
489 excs += dum*test;
490 }
491
492 if (ran < excs) goto outOfLoop; // -------------------------->
493 }
494 }
495 }
496 }
497 }
498 // 3 previous loops continued to the end
499 inElastic = false; // quasi-elastic scattering.
500 return;
501 }
502 }
503 outOfLoop: // <------------------------------------------------------------------------
504
505 if( targetCode == neutronCode)
506 {
507 if( np == nm)
508 {
509 }
510 else if (np == (nm-1))
511 {
512 if( G4UniformRand() < 0.5)
513 {
514 pv[1] = Proton;
515 }
516 else
517 {
518 pv[0] = AntiNeutron;
519 }
520 }
521 else
522 {
523 pv[0] = AntiNeutron;
524 pv[1] = Proton;
525 }
526 }
527 else
528 {
529 if( np == nm)
530 {
531 if( G4UniformRand() < 0.25)
532 {
533 pv[0] = AntiNeutron;
534 pv[1] = Neutron;
535 }
536 else
537 {
538 }
539 }
540 else if ( np == (1+nm))
541 {
542 pv[1] = Neutron;
543 }
544 else
545 {
546 pv[0] = AntiNeutron;
547 }
548 }
549
550 }
551 else // annihilation
552 {
553 if ( availableEnergy > 2. * PionPlus.getMass() )
554 {
555
556 G4double aleab = std::log(availableEnergy);
557 G4double n = 3.62567+aleab*(0.665843+aleab*(0.336514
558 + aleab*(0.117712+0.0136912*aleab))) - 2.0;
559
560 // normalization constant for kno-distribution.
561 // calculate first the sum of all constants, check for numerical problems.
562 G4double test, dum, anpn = 0.0;
563
564 for (nt=2; nt<=numSec; nt++) {
565 test = std::exp( Amin( expxu, Amax( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
566 dum = pi*nt/(2.0*n*n);
567 if (std::fabs(dum) < 1.0) {
568 if( test >= 1.0e-10 )anpn += dum*test;
569 } else {
570 anpn += dum*test;
571 }
572 }
573
574 G4double ran = G4UniformRand();
575 G4double excs = 0.0;
576 if( targetCode == protonCode )
577 {
578 counter = -1;
579 for( np=1; np<numSec/3; np++ )
580 {
581 nm = np;
582 for( nz=0; nz<numSec/3; nz++ )
583 {
584 if( ++counter < numMulAn )
585 {
586 nt = np+nm+nz;
587 if ( (nt>0) && (nt<=numSec) ) {
588 test = std::exp( Amin( expxu, Amax( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
589 dum = (pi/anpn)*nt*protmulAn[counter]*protnormAn[nt-1]/(2.0*n*n);
590 if (std::fabs(dum) < 1.0) {
591 if( test >= 1.0e-10 )excs += dum*test;
592 } else {
593 excs += dum*test;
594 }
595
596 if (ran < excs) goto outOfLoopAn; //----------------------->
597 }
598 }
599 }
600 }
601 // 3 previous loops continued to the end
602 inElastic = false; // quasi-elastic scattering
603 return;
604 }
605 else
606 { // target must be a neutron
607 counter = -1;
608 for( np=1; np<numSec/3; np++ )
609 {
610 nm = np+1;
611 for( nz=0; nz<numSec/3; nz++ )
612 {
613 if( ++counter < numMulAn )
614 {
615 nt = np+nm+nz;
616 if ( (nt>=1) && (nt<=numSec) ) {
617 test = std::exp( Amin( expxu, Amax( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
618 dum = (pi/anpn)*nt*neutmulAn[counter]*neutnormAn[nt-1]/(2.0*n*n);
619 if (std::fabs(dum) < 1.0) {
620 if( test >= 1.0e-10 )excs += dum*test;
621 } else {
622 excs += dum*test;
623 }
624
625 if (ran < excs) goto outOfLoopAn; // -------------------------->
626 }
627 }
628 }
629 }
630 inElastic = false; // quasi-elastic scattering.
631 return;
632 }
633 outOfLoopAn: // <------------------------------------------------------------------
634 vecLen = 0;
635 }
636 }
637
638 nt = np + nm + nz;
639 while ( nt > 0)
640 {
641 G4double ran = G4UniformRand();
642 if ( ran < (G4double)np/nt)
643 {
644 if( np > 0 )
645 { pv[vecLen++] = PionPlus;
646 np--;
647 }
648 }
649 else if ( ran < (G4double)(np+nm)/nt)
650 {
651 if( nm > 0 )
652 {
653 pv[vecLen++] = PionMinus;
654 nm--;
655 }
656 }
657 else
658 {
659 if( nz > 0 )
660 {
661 pv[vecLen++] = PionZero;
662 nz--;
663 }
664 }
665 nt = np + nm + nz;
666 }
667 if (verboseLevel > 1)
668 {
669 G4cout << "Particles produced: " ;
670 G4cout << pv[0].getName() << " " ;
671 G4cout << pv[1].getName() << " " ;
672 for (i=2; i < vecLen; i++)
673 {
674 G4cout << pv[i].getName() << " " ;
675 }
676 G4cout << G4endl;
677 }
678 return;
679 }
680
681
682
683
684
685
686
687
688
Note: See TracBrowser for help on using the repository browser.