source: trunk/source/processes/hadronic/models/high_energy/src/G4HEAntiSigmaPlusInelastic.cc@ 1350

Last change on this file since 1350 was 1347, checked in by garnier, 15 years ago

geant4 tag 9.4

File size: 25.7 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id: G4HEAntiSigmaPlusInelastic.cc,v 1.17 2010/11/29 05:44:44 dennis Exp $
27// GEANT4 tag $Name: geant4-09-04-ref-00 $
28//
29
30#include "globals.hh"
31#include "G4ios.hh"
32
33// G4 Process: Gheisha High Energy Collision model.
34// This includes the high energy cascading model, the two-body-resonance model
35// and the low energy two-body model. Not included are the low energy stuff
36// like nuclear reactions, nuclear fission without any cascading and all
37// processes for particles at rest.
38// First work done by J.L.Chuma and F.W.Jones, TRIUMF, June 96.
39// H. Fesefeldt, RWTH-Aachen, 23-October-1996
40// Last modified: 29-July-1998
41
42#include "G4HEAntiSigmaPlusInelastic.hh"
43
44G4HadFinalState*
45G4HEAntiSigmaPlusInelastic::ApplyYourself(const G4HadProjectile& aTrack,
46 G4Nucleus& targetNucleus)
47{
48 G4HEVector* pv = new G4HEVector[MAXPART];
49 const G4HadProjectile* aParticle = &aTrack;
50 const G4double atomicWeight = targetNucleus.GetN();
51 const G4double atomicNumber = targetNucleus.GetZ();
52 G4HEVector incidentParticle(aParticle);
53
54 G4int incidentCode = incidentParticle.getCode();
55 G4double incidentMass = incidentParticle.getMass();
56 G4double incidentTotalEnergy = incidentParticle.getEnergy();
57 G4double incidentTotalMomentum = incidentParticle.getTotalMomentum();
58 G4double incidentKineticEnergy = incidentTotalEnergy - incidentMass;
59
60 if (incidentKineticEnergy < 1.)
61 G4cout << "GHEAntiSigmaPlusInelastic: incident energy < 1 GeV" << G4endl;
62
63 if (verboseLevel > 1) {
64 G4cout << "G4HEAntiSigmaPlusInelastic::ApplyYourself" << G4endl;
65 G4cout << "incident particle " << incidentParticle.getName()
66 << "mass " << incidentMass
67 << "kinetic energy " << incidentKineticEnergy
68 << G4endl;
69 G4cout << "target material with (A,Z) = ("
70 << atomicWeight << "," << atomicNumber << ")" << G4endl;
71 }
72
73 G4double inelasticity = NuclearInelasticity(incidentKineticEnergy,
74 atomicWeight, atomicNumber);
75 if (verboseLevel > 1)
76 G4cout << "nuclear inelasticity = " << inelasticity << G4endl;
77
78 incidentKineticEnergy -= inelasticity;
79
80 G4double excitationEnergyGNP = 0.;
81 G4double excitationEnergyDTA = 0.;
82
83 G4double excitation = NuclearExcitation(incidentKineticEnergy,
84 atomicWeight, atomicNumber,
85 excitationEnergyGNP,
86 excitationEnergyDTA);
87 if (verboseLevel > 1)
88 G4cout << "nuclear excitation = " << excitation << excitationEnergyGNP
89 << excitationEnergyDTA << G4endl;
90
91 incidentKineticEnergy -= excitation;
92 incidentTotalEnergy = incidentKineticEnergy + incidentMass;
93 incidentTotalMomentum = std::sqrt( (incidentTotalEnergy-incidentMass)
94 *(incidentTotalEnergy+incidentMass));
95
96 G4HEVector targetParticle;
97 if (G4UniformRand() < atomicNumber/atomicWeight) {
98 targetParticle.setDefinition("Proton");
99 } else {
100 targetParticle.setDefinition("Neutron");
101 }
102
103 G4double targetMass = targetParticle.getMass();
104 G4double centerOfMassEnergy = std::sqrt(incidentMass*incidentMass
105 + targetMass*targetMass
106 + 2.0*targetMass*incidentTotalEnergy);
107 G4double availableEnergy = centerOfMassEnergy - targetMass - incidentMass;
108
109 G4bool inElastic = true;
110 vecLength = 0;
111
112 if (verboseLevel > 1)
113 G4cout << "ApplyYourself: CallFirstIntInCascade for particle "
114 << incidentCode << G4endl;
115
116 G4bool successful = false;
117
118 FirstIntInCasAntiSigmaPlus(inElastic, availableEnergy, pv, vecLength,
119 incidentParticle, targetParticle, atomicWeight);
120
121 if (verboseLevel > 1)
122 G4cout << "ApplyYourself::StrangeParticlePairProduction" << G4endl;
123
124 if ((vecLength > 0) && (availableEnergy > 1.))
125 StrangeParticlePairProduction(availableEnergy, centerOfMassEnergy,
126 pv, vecLength,
127 incidentParticle, targetParticle);
128
129 HighEnergyCascading(successful, pv, vecLength,
130 excitationEnergyGNP, excitationEnergyDTA,
131 incidentParticle, targetParticle,
132 atomicWeight, atomicNumber);
133 if (!successful)
134 HighEnergyClusterProduction(successful, pv, vecLength,
135 excitationEnergyGNP, excitationEnergyDTA,
136 incidentParticle, targetParticle,
137 atomicWeight, atomicNumber);
138 if (!successful)
139 MediumEnergyCascading(successful, pv, vecLength,
140 excitationEnergyGNP, excitationEnergyDTA,
141 incidentParticle, targetParticle,
142 atomicWeight, atomicNumber);
143
144 if (!successful)
145 MediumEnergyClusterProduction(successful, pv, vecLength,
146 excitationEnergyGNP, excitationEnergyDTA,
147 incidentParticle, targetParticle,
148 atomicWeight, atomicNumber);
149 if (!successful)
150 QuasiElasticScattering(successful, pv, vecLength,
151 excitationEnergyGNP, excitationEnergyDTA,
152 incidentParticle, targetParticle,
153 atomicWeight, atomicNumber);
154 if (!successful)
155 ElasticScattering(successful, pv, vecLength,
156 incidentParticle,
157 atomicWeight, atomicNumber);
158
159 if (!successful)
160 G4cout << "GHEInelasticInteraction::ApplyYourself fails to produce final state particles"
161 << G4endl;
162
163 FillParticleChange(pv, vecLength);
164 delete [] pv;
165 theParticleChange.SetStatusChange(stopAndKill);
166 return &theParticleChange;
167}
168
169
170void
171G4HEAntiSigmaPlusInelastic::FirstIntInCasAntiSigmaPlus(G4bool& inElastic,
172 const G4double availableEnergy,
173 G4HEVector pv[],
174 G4int& vecLen,
175 const G4HEVector& incidentParticle,
176 const G4HEVector& targetParticle,
177 const G4double atomicWeight)
178
179// AntiSigma+ undergoes interaction with nucleon within a nucleus. Check if it is
180// energetically possible to produce pions/kaons. In not, assume nuclear excitation
181// occurs and input particle is degraded in energy. No other particles are produced.
182// If reaction is possible, find the correct number of pions/protons/neutrons
183// produced using an interpolation to multiplicity data. Replace some pions or
184// protons/neutrons by kaons or strange baryons according to the average
185// multiplicity per inelastic reaction.
186{
187 static const G4double expxu = std::log(MAXFLOAT); // upper bound for arg. of exp
188 static const G4double expxl = -expxu; // lower bound for arg. of exp
189
190 static const G4double protb = 0.7;
191 static const G4double neutb = 0.7;
192 static const G4double c = 1.25;
193
194 static const G4int numMul = 1200;
195 static const G4int numMulAn = 400;
196 static const G4int numSec = 60;
197
198 G4int protonCode = Proton.getCode();
199
200 G4int targetCode = targetParticle.getCode();
201 G4double incidentTotalMomentum = incidentParticle.getTotalMomentum();
202
203 static G4bool first = true;
204 static G4double protmul[numMul], protnorm[numSec]; // proton constants
205 static G4double protmulAn[numMulAn],protnormAn[numSec];
206 static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
207 static G4double neutmulAn[numMulAn],neutnormAn[numSec];
208
209 // misc. local variables
210 // np = number of pi+, nm = number of pi-, nz = number of pi0
211
212 G4int i, counter, nt, np, nm, nz;
213
214 if( first )
215 { // compute normalization constants, this will only be done once
216 first = false;
217 for( i=0; i<numMul ; i++ ) protmul[i] = 0.0;
218 for( i=0; i<numSec ; i++ ) protnorm[i] = 0.0;
219 counter = -1;
220 for( np=0; np<(numSec/3); np++ )
221 {
222 for( nm=std::max(0,np-1); nm<=(np+1); nm++ )
223 {
224 for( nz=0; nz<numSec/3; nz++ )
225 {
226 if( ++counter < numMul )
227 {
228 nt = np+nm+nz;
229 if( (nt>0) && (nt<=numSec) )
230 {
231 protmul[counter] = pmltpc(np,nm,nz,nt,protb,c);
232 protnorm[nt-1] += protmul[counter];
233 }
234 }
235 }
236 }
237 }
238 for( i=0; i<numMul; i++ )neutmul[i] = 0.0;
239 for( i=0; i<numSec; i++ )neutnorm[i] = 0.0;
240 counter = -1;
241 for( np=0; np<numSec/3; np++ )
242 {
243 for( nm=np; nm<=(np+2); nm++ )
244 {
245 for( nz=0; nz<numSec/3; nz++ )
246 {
247 if( ++counter < numMul )
248 {
249 nt = np+nm+nz;
250 if( (nt>0) && (nt<=numSec) )
251 {
252 neutmul[counter] = pmltpc(np,nm,nz,nt,neutb,c);
253 neutnorm[nt-1] += neutmul[counter];
254 }
255 }
256 }
257 }
258 }
259 for( i=0; i<numSec; i++ )
260 {
261 if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
262 if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
263 }
264 // annihilation
265 for( i=0; i<numMulAn ; i++ ) protmulAn[i] = 0.0;
266 for( i=0; i<numSec ; i++ ) protnormAn[i] = 0.0;
267 counter = -1;
268 for( np=1; np<(numSec/3); np++ )
269 {
270 nm = np;
271 for( nz=0; nz<numSec/3; nz++ )
272 {
273 if( ++counter < numMulAn )
274 {
275 nt = np+nm+nz;
276 if( (nt>1) && (nt<=numSec) )
277 {
278 protmulAn[counter] = pmltpc(np,nm,nz,nt,protb,c);
279 protnormAn[nt-1] += protmulAn[counter];
280 }
281 }
282 }
283 }
284 for( i=0; i<numMulAn; i++ ) neutmulAn[i] = 0.0;
285 for( i=0; i<numSec; i++ ) neutnormAn[i] = 0.0;
286 counter = -1;
287 for( np=0; np<numSec/3; np++ )
288 {
289 nm = np+1;
290 for( nz=0; nz<numSec/3; nz++ )
291 {
292 if( ++counter < numMulAn )
293 {
294 nt = np+nm+nz;
295 if( (nt>1) && (nt<=numSec) )
296 {
297 neutmulAn[counter] = pmltpc(np,nm,nz,nt,neutb,c);
298 neutnormAn[nt-1] += neutmulAn[counter];
299 }
300 }
301 }
302 }
303 for( i=0; i<numSec; i++ )
304 {
305 if( protnormAn[i] > 0.0 )protnormAn[i] = 1.0/protnormAn[i];
306 if( neutnormAn[i] > 0.0 )neutnormAn[i] = 1.0/neutnormAn[i];
307 }
308 } // end of initialization
309
310
311 // initialize the first two places
312 // the same as beam and target
313 pv[0] = incidentParticle;
314 pv[1] = targetParticle;
315 vecLen = 2;
316
317 if( !inElastic )
318 { // some two-body reactions
319 G4double cech[] = {0.50, 0.45, 0.40, 0.35, 0.30, 0.25, 0.06, 0.04, 0.005, 0.};
320
321 G4int iplab = std::min(9, G4int( incidentTotalMomentum*2.5));
322 if( G4UniformRand() < cech[iplab]/std::pow(atomicWeight,0.42) )
323 {
324 G4double ran = G4UniformRand();
325
326 if ( targetCode == protonCode)
327 {
328 if(ran < 0.2)
329 {
330 pv[0] = Proton;
331 pv[1] = AntiSigmaPlus;
332 }
333 else if (ran < 0.4)
334 {
335 pv[0] = AntiLambda;
336 pv[1] = Neutron;
337 }
338 else if (ran < 0.6)
339 {
340 pv[0] = Neutron;
341 pv[1] = AntiLambda;
342 }
343 else if (ran < 0.8)
344 {
345 pv[0] = Neutron;
346 pv[1] = AntiSigmaZero;
347 }
348 else
349 {
350 pv[0] = AntiSigmaZero;
351 pv[1] = Neutron;
352 }
353 }
354 else
355 {
356 pv[0] = Neutron;
357 pv[1] = AntiSigmaPlus;
358 }
359 }
360 return;
361 }
362 else if (availableEnergy <= PionPlus.getMass())
363 return;
364
365 // inelastic scattering
366
367 np = 0; nm = 0; nz = 0;
368 G4double anhl[] = {1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 0.97, 0.88,
369 0.85, 0.81, 0.75, 0.64, 0.64, 0.55, 0.55, 0.45, 0.47, 0.40,
370 0.39, 0.36, 0.33, 0.10, 0.01};
371 G4int iplab = G4int( incidentTotalMomentum*10.);
372 if ( iplab > 9) iplab = 10 + G4int( (incidentTotalMomentum -1.)*5. );
373 if ( iplab > 14) iplab = 15 + G4int( incidentTotalMomentum -2. );
374 if ( iplab > 22) iplab = 23 + G4int( (incidentTotalMomentum -10.)/10.);
375 iplab = std::min(24, iplab);
376
377 if ( G4UniformRand() > anhl[iplab] )
378 { // non- annihilation channels
379
380 // number of total particles vs. centre of mass Energy - 2*proton mass
381
382 G4double aleab = std::log(availableEnergy);
383 G4double n = 3.62567+aleab*(0.665843+aleab*(0.336514
384 + aleab*(0.117712+0.0136912*aleab))) - 2.0;
385
386 // normalization constant for kno-distribution.
387 // calculate first the sum of all constants, check for numerical problems.
388 G4double test, dum, anpn = 0.0;
389
390 for (nt=1; nt<=numSec; nt++) {
391 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
392 dum = pi*nt/(2.0*n*n);
393 if (std::fabs(dum) < 1.0) {
394 if( test >= 1.0e-10 )anpn += dum*test;
395 } else {
396 anpn += dum*test;
397 }
398 }
399
400 G4double ran = G4UniformRand();
401 G4double excs = 0.0;
402 if( targetCode == protonCode )
403 {
404 counter = -1;
405 for( np=0; np<numSec/3; np++ )
406 {
407 for( nm=std::max(0,np-1); nm<=(np+1); nm++ )
408 {
409 for( nz=0; nz<numSec/3; nz++ )
410 {
411 if( ++counter < numMul )
412 {
413 nt = np+nm+nz;
414 if ( (nt>0) && (nt<=numSec) ) {
415 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
416 dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
417 if (std::fabs(dum) < 1.0) {
418 if( test >= 1.0e-10 )excs += dum*test;
419 } else {
420 excs += dum*test;
421 }
422
423 if (ran < excs) goto outOfLoop; //----------------------->
424 }
425 }
426 }
427 }
428 }
429
430 // 3 previous loops continued to the end
431 inElastic = false; // quasi-elastic scattering
432 return;
433 }
434 else
435 { // target must be a neutron
436 counter = -1;
437 for( np=0; np<numSec/3; np++ )
438 {
439 for( nm=np; nm<=(np+2); nm++ )
440 {
441 for( nz=0; nz<numSec/3; nz++ )
442 {
443 if( ++counter < numMul )
444 {
445 nt = np+nm+nz;
446 if ( (nt>0) && (nt<=numSec) ) {
447 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
448 dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
449 if (std::fabs(dum) < 1.0) {
450 if( test >= 1.0e-10 )excs += dum*test;
451 } else {
452 excs += dum*test;
453 }
454
455 if (ran < excs) goto outOfLoop; // -------------------------->
456 }
457 }
458 }
459 }
460 }
461 // 3 previous loops continued to the end
462 inElastic = false; // quasi-elastic scattering.
463 return;
464 }
465
466 outOfLoop: // <------------------------------------------------------------------------
467
468 ran = G4UniformRand();
469
470 if( targetCode == protonCode)
471 {
472 if( np == nm)
473 {
474 if (ran < 0.50)
475 {
476 }
477 else if (ran < 0.75)
478 {
479 pv[0] = AntiSigmaZero;
480 pv[1] = Neutron;
481 }
482 else
483 {
484 pv[0] = AntiLambda;
485 pv[1] = Neutron;
486 }
487 }
488 else if (np == (nm-1))
489 {
490 if( ran < 0.50)
491 {
492 pv[0] = AntiLambda;
493 }
494 else
495 {
496 pv[0] = AntiSigmaZero;
497 }
498 }
499 else
500 {
501 pv[1] = Neutron;
502 }
503 }
504 else
505 {
506 if( np == nm)
507 {
508 }
509 else if ( np == (nm-1))
510 {
511 if (ran < 0.5)
512 {
513 pv[1] = Proton;
514 }
515 else if (ran < 0.75)
516 {
517 pv[0] = AntiLambda;
518 }
519 else
520 {
521 pv[0] = AntiSigmaZero;
522 }
523 }
524 else
525 {
526 if (ran < 0.5)
527 {
528 pv[0] = AntiLambda;
529 pv[1] = Proton;
530 }
531 else
532 {
533 pv[0] = AntiSigmaZero;
534 pv[1] = Proton;
535 }
536 }
537 }
538 }
539 else // annihilation
540 {
541 if ( availableEnergy > 2. * PionPlus.getMass() )
542 {
543
544 G4double aleab = std::log(availableEnergy);
545 G4double n = 3.62567+aleab*(0.665843+aleab*(0.336514
546 + aleab*(0.117712+0.0136912*aleab))) - 2.0;
547
548 // normalization constant for kno-distribution.
549 // calculate first the sum of all constants, check for numerical problems.
550 G4double test, dum, anpn = 0.0;
551
552 for (nt=2; nt<=numSec; nt++) {
553 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
554 dum = pi*nt/(2.0*n*n);
555 if (std::fabs(dum) < 1.0) {
556 if( test >= 1.0e-10 )anpn += dum*test;
557 } else {
558 anpn += dum*test;
559 }
560 }
561
562 G4double ran = G4UniformRand();
563 G4double excs = 0.0;
564 if( targetCode == protonCode )
565 {
566 counter = -1;
567 for( np=1; np<numSec/3; np++ )
568 {
569 nm = np;
570 for( nz=0; nz<numSec/3; nz++ )
571 {
572 if( ++counter < numMulAn )
573 {
574 nt = np+nm+nz;
575 if ( (nt>1) && (nt<=numSec) ) {
576 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
577 dum = (pi/anpn)*nt*protmulAn[counter]*protnormAn[nt-1]/(2.0*n*n);
578 if (std::fabs(dum) < 1.0) {
579 if( test >= 1.0e-10 )excs += dum*test;
580 } else {
581 excs += dum*test;
582 }
583
584 if (ran < excs) goto outOfLoopAn; //----------------------->
585 }
586 }
587 }
588 }
589 // 3 previous loops continued to the end
590 inElastic = false; // quasi-elastic scattering
591 return;
592 }
593 else
594 { // target must be a neutron
595 counter = -1;
596 for( np=0; np<numSec/3; np++ )
597 {
598 nm = np+1;
599 for( nz=0; nz<numSec/3; nz++ )
600 {
601 if( ++counter < numMulAn )
602 {
603 nt = np+nm+nz;
604 if ( (nt>1) && (nt<=numSec) ) {
605 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
606 dum = (pi/anpn)*nt*neutmulAn[counter]*neutnormAn[nt-1]/(2.0*n*n);
607 if (std::fabs(dum) < 1.0) {
608 if( test >= 1.0e-10 )excs += dum*test;
609 } else {
610 excs += dum*test;
611 }
612
613 if (ran < excs) goto outOfLoopAn; // -------------------------->
614 }
615 }
616 }
617 }
618 inElastic = false; // quasi-elastic scattering.
619 return;
620 }
621 outOfLoopAn: // <----------------------------------------
622 vecLen = 0;
623 }
624 }
625
626 nt = np + nm + nz;
627 while ( nt > 0)
628 {
629 G4double ran = G4UniformRand();
630 if ( ran < (G4double)np/nt)
631 {
632 if( np > 0 )
633 { pv[vecLen++] = PionPlus;
634 np--;
635 }
636 }
637 else if ( ran < (G4double)(np+nm)/nt)
638 {
639 if( nm > 0 )
640 {
641 pv[vecLen++] = PionMinus;
642 nm--;
643 }
644 }
645 else
646 {
647 if( nz > 0 )
648 {
649 pv[vecLen++] = PionZero;
650 nz--;
651 }
652 }
653 nt = np + nm + nz;
654 }
655 if (verboseLevel > 1)
656 {
657 G4cout << "Particles produced: " ;
658 G4cout << pv[0].getName() << " " ;
659 G4cout << pv[1].getName() << " " ;
660 for (i=2; i < vecLen; i++)
661 {
662 G4cout << pv[i].getName() << " " ;
663 }
664 G4cout << G4endl;
665 }
666 return;
667 }
668
669
670
671
672
673
674
675
676
677
Note: See TracBrowser for help on using the repository browser.