| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | // $Id: G4HEKaonZeroLongInelastic.cc,v 1.11 2010/02/09 21:59:10 dennis Exp $
|
|---|
| 27 | // GEANT4 tag $Name: geant4-09-04-beta-cand-01 $
|
|---|
| 28 | //
|
|---|
| 29 | //
|
|---|
| 30 |
|
|---|
| 31 | #include "globals.hh"
|
|---|
| 32 | #include "G4ios.hh"
|
|---|
| 33 |
|
|---|
| 34 | //
|
|---|
| 35 | // G4 Process: Gheisha High Energy Collision model.
|
|---|
| 36 | // This includes the high energy cascading model, the two-body-resonance model
|
|---|
| 37 | // and the low energy two-body model. Not included are the low energy stuff like
|
|---|
| 38 | // nuclear reactions, nuclear fission without any cascading and all processes for
|
|---|
| 39 | // particles at rest.
|
|---|
| 40 | //
|
|---|
| 41 | // New version by D.H. Wright (SLAC) to fix seg fault in old version
|
|---|
| 42 | // 26 January 2010
|
|---|
| 43 |
|
|---|
| 44 |
|
|---|
| 45 | #include "G4HEKaonZeroLongInelastic.hh"
|
|---|
| 46 |
|
|---|
| 47 | G4HadFinalState* G4HEKaonZeroLongInelastic::
|
|---|
| 48 | ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
|
|---|
| 49 | {
|
|---|
| 50 | G4HEVector * pv = new G4HEVector[MAXPART];
|
|---|
| 51 | const G4HadProjectile *aParticle = &aTrack;
|
|---|
| 52 | const G4double atomicWeight = targetNucleus.GetN();
|
|---|
| 53 | const G4double atomicNumber = targetNucleus.GetZ();
|
|---|
| 54 | G4HEVector incidentParticle(aParticle);
|
|---|
| 55 |
|
|---|
| 56 | G4int incidentCode = incidentParticle.getCode();
|
|---|
| 57 | G4double incidentMass = incidentParticle.getMass();
|
|---|
| 58 | G4double incidentTotalEnergy = incidentParticle.getEnergy();
|
|---|
| 59 | G4double incidentTotalMomentum = incidentParticle.getTotalMomentum();
|
|---|
| 60 | G4double incidentKineticEnergy = incidentTotalEnergy - incidentMass;
|
|---|
| 61 |
|
|---|
| 62 | if(incidentKineticEnergy < 1)
|
|---|
| 63 | G4cout << "GHEKaonZeroLongInelastic: incident energy < 1 GeV " << G4endl;
|
|---|
| 64 |
|
|---|
| 65 | if(verboseLevel > 1) {
|
|---|
| 66 | G4cout << "G4HEKaonZeroLongInelastic::ApplyYourself" << G4endl;
|
|---|
| 67 | G4cout << "incident particle " << incidentParticle.getName()
|
|---|
| 68 | << "mass " << incidentMass
|
|---|
| 69 | << "kinetic energy " << incidentKineticEnergy
|
|---|
| 70 | << G4endl;
|
|---|
| 71 | G4cout << "target material with (A,Z) = ("
|
|---|
| 72 | << atomicWeight << "," << atomicNumber << ")" << G4endl;
|
|---|
| 73 | }
|
|---|
| 74 |
|
|---|
| 75 | G4double inelasticity = NuclearInelasticity(incidentKineticEnergy,
|
|---|
| 76 | atomicWeight, atomicNumber);
|
|---|
| 77 | if(verboseLevel > 1)
|
|---|
| 78 | G4cout << "nuclear inelasticity = " << inelasticity << G4endl;
|
|---|
| 79 |
|
|---|
| 80 | incidentKineticEnergy -= inelasticity;
|
|---|
| 81 |
|
|---|
| 82 | G4double excitationEnergyGNP = 0.;
|
|---|
| 83 | G4double excitationEnergyDTA = 0.;
|
|---|
| 84 |
|
|---|
| 85 | G4double excitation = NuclearExcitation(incidentKineticEnergy,
|
|---|
| 86 | atomicWeight, atomicNumber,
|
|---|
| 87 | excitationEnergyGNP,
|
|---|
| 88 | excitationEnergyDTA);
|
|---|
| 89 | if(verboseLevel > 1)
|
|---|
| 90 | G4cout << "nuclear excitation = " << excitation << excitationEnergyGNP
|
|---|
| 91 | << excitationEnergyDTA << G4endl;
|
|---|
| 92 |
|
|---|
| 93 | incidentKineticEnergy -= excitation;
|
|---|
| 94 | incidentTotalEnergy = incidentKineticEnergy + incidentMass;
|
|---|
| 95 | incidentTotalMomentum = std::sqrt( (incidentTotalEnergy-incidentMass)
|
|---|
| 96 | *(incidentTotalEnergy+incidentMass));
|
|---|
| 97 |
|
|---|
| 98 |
|
|---|
| 99 | G4HEVector targetParticle;
|
|---|
| 100 | if(G4UniformRand() < atomicNumber/atomicWeight) {
|
|---|
| 101 | targetParticle.setDefinition("Proton");
|
|---|
| 102 | } else {
|
|---|
| 103 | targetParticle.setDefinition("Neutron");
|
|---|
| 104 | }
|
|---|
| 105 |
|
|---|
| 106 | G4double targetMass = targetParticle.getMass();
|
|---|
| 107 | G4double centerOfMassEnergy = std::sqrt( incidentMass*incidentMass + targetMass*targetMass
|
|---|
| 108 | + 2.0*targetMass*incidentTotalEnergy);
|
|---|
| 109 | G4double availableEnergy = centerOfMassEnergy - targetMass - incidentMass;
|
|---|
| 110 | // this was the meaning of inElastic in the
|
|---|
| 111 | // original Gheisha stand-alone version.
|
|---|
| 112 | // G4bool inElastic = InElasticCrossSectionInFirstInt
|
|---|
| 113 | // (availableEnergy, incidentCode, incidentTotalMomentum);
|
|---|
| 114 | // for unknown reasons, it has been replaced by the following code in Geant???
|
|---|
| 115 |
|
|---|
| 116 | G4bool inElastic = true;
|
|---|
| 117 | // if (G4UniformRand() < elasticCrossSection/totalCrossSection) inElastic = false;
|
|---|
| 118 |
|
|---|
| 119 | vecLength = 0;
|
|---|
| 120 |
|
|---|
| 121 | if(verboseLevel > 1)
|
|---|
| 122 | G4cout << "ApplyYourself: CallFirstIntInCascade for particle "
|
|---|
| 123 | << incidentCode << G4endl;
|
|---|
| 124 |
|
|---|
| 125 | G4bool successful = false;
|
|---|
| 126 |
|
|---|
| 127 | if(inElastic || (!inElastic && atomicWeight < 1.5)) {
|
|---|
| 128 |
|
|---|
| 129 | // Split K0L into K0 and K0bar
|
|---|
| 130 | if (G4UniformRand() < 0.5)
|
|---|
| 131 | FirstIntInCasAntiKaonZero(inElastic, availableEnergy, pv, vecLength,
|
|---|
| 132 | incidentParticle, targetParticle );
|
|---|
| 133 | else
|
|---|
| 134 | FirstIntInCasKaonZero(inElastic, availableEnergy, pv, vecLength,
|
|---|
| 135 | incidentParticle, targetParticle, atomicWeight );
|
|---|
| 136 |
|
|---|
| 137 | // Do nuclear interaction with either K0 or K0bar
|
|---|
| 138 | if ((vecLength > 0) && (availableEnergy > 1.))
|
|---|
| 139 | StrangeParticlePairProduction(availableEnergy, centerOfMassEnergy,
|
|---|
| 140 | pv, vecLength,
|
|---|
| 141 | incidentParticle, targetParticle);
|
|---|
| 142 | HighEnergyCascading(successful, pv, vecLength,
|
|---|
| 143 | excitationEnergyGNP, excitationEnergyDTA,
|
|---|
| 144 | incidentParticle, targetParticle,
|
|---|
| 145 | atomicWeight, atomicNumber);
|
|---|
| 146 | if (!successful)
|
|---|
| 147 | HighEnergyClusterProduction(successful, pv, vecLength,
|
|---|
| 148 | excitationEnergyGNP, excitationEnergyDTA,
|
|---|
| 149 | incidentParticle, targetParticle,
|
|---|
| 150 | atomicWeight, atomicNumber);
|
|---|
| 151 | if (!successful)
|
|---|
| 152 | MediumEnergyCascading(successful, pv, vecLength,
|
|---|
| 153 | excitationEnergyGNP, excitationEnergyDTA,
|
|---|
| 154 | incidentParticle, targetParticle,
|
|---|
| 155 | atomicWeight, atomicNumber);
|
|---|
| 156 |
|
|---|
| 157 | if (!successful)
|
|---|
| 158 | MediumEnergyClusterProduction(successful, pv, vecLength,
|
|---|
| 159 | excitationEnergyGNP, excitationEnergyDTA,
|
|---|
| 160 | incidentParticle, targetParticle,
|
|---|
| 161 | atomicWeight, atomicNumber);
|
|---|
| 162 | if (!successful)
|
|---|
| 163 | QuasiElasticScattering(successful, pv, vecLength,
|
|---|
| 164 | excitationEnergyGNP, excitationEnergyDTA,
|
|---|
| 165 | incidentParticle, targetParticle,
|
|---|
| 166 | atomicWeight, atomicNumber);
|
|---|
| 167 | }
|
|---|
| 168 |
|
|---|
| 169 | if (!successful)
|
|---|
| 170 | ElasticScattering(successful, pv, vecLength,
|
|---|
| 171 | incidentParticle,
|
|---|
| 172 | atomicWeight, atomicNumber);
|
|---|
| 173 |
|
|---|
| 174 | if (!successful)
|
|---|
| 175 | G4cout << "GHEInelasticInteraction::ApplyYourself fails to produce final state particles"
|
|---|
| 176 | << G4endl;
|
|---|
| 177 |
|
|---|
| 178 | // Check for K0, K0bar and change particle types to K0L, K0S if necessary
|
|---|
| 179 | G4int kcode;
|
|---|
| 180 | for (G4int i = 0; i < vecLength; i++) {
|
|---|
| 181 | kcode = pv[i].getCode();
|
|---|
| 182 | if (kcode == KaonZero.getCode() || kcode == AntiKaonZero.getCode()) {
|
|---|
| 183 | if (G4UniformRand() < 0.5)
|
|---|
| 184 | pv[i] = KaonZeroShort;
|
|---|
| 185 | else
|
|---|
| 186 | pv[i] = KaonZeroLong;
|
|---|
| 187 | }
|
|---|
| 188 | }
|
|---|
| 189 |
|
|---|
| 190 | // ................
|
|---|
| 191 |
|
|---|
| 192 | FillParticleChange(pv, vecLength);
|
|---|
| 193 | delete [] pv;
|
|---|
| 194 | theParticleChange.SetStatusChange(stopAndKill);
|
|---|
| 195 | return & theParticleChange;
|
|---|
| 196 | }
|
|---|
| 197 |
|
|---|
| 198 |
|
|---|
| 199 | void
|
|---|
| 200 | G4HEKaonZeroLongInelastic::FirstIntInCasKaonZero(G4bool &inElastic,
|
|---|
| 201 | const G4double availableEnergy,
|
|---|
| 202 | G4HEVector pv[],
|
|---|
| 203 | G4int &vecLen,
|
|---|
| 204 | G4HEVector incidentParticle,
|
|---|
| 205 | G4HEVector targetParticle,
|
|---|
| 206 | const G4double atomicWeight)
|
|---|
| 207 |
|
|---|
| 208 | // Kaon0 undergoes interaction with nucleon within a nucleus. Check if it is
|
|---|
| 209 | // energetically possible to produce pions/kaons. In not, assume nuclear excitation
|
|---|
| 210 | // occurs and input particle is degraded in energy. No other particles are produced.
|
|---|
| 211 | // If reaction is possible, find the correct number of pions/protons/neutrons
|
|---|
| 212 | // produced using an interpolation to multiplicity data. Replace some pions or
|
|---|
| 213 | // protons/neutrons by kaons or strange baryons according to the average
|
|---|
| 214 | // multiplicity per inelastic reaction.
|
|---|
| 215 |
|
|---|
| 216 | {
|
|---|
| 217 | static const G4double expxu = std::log(MAXFLOAT); // upper bound for arg. of exp
|
|---|
| 218 | static const G4double expxl = -expxu; // lower bound for arg. of exp
|
|---|
| 219 |
|
|---|
| 220 | static const G4double protb = 0.7;
|
|---|
| 221 | static const G4double neutb = 0.7;
|
|---|
| 222 | static const G4double c = 1.25;
|
|---|
| 223 |
|
|---|
| 224 | static const G4int numMul = 1200;
|
|---|
| 225 | static const G4int numSec = 60;
|
|---|
| 226 |
|
|---|
| 227 | G4int neutronCode = Neutron.getCode();
|
|---|
| 228 | G4int protonCode = Proton.getCode();
|
|---|
| 229 |
|
|---|
| 230 | G4int targetCode = targetParticle.getCode();
|
|---|
| 231 | G4double incidentTotalMomentum = incidentParticle.getTotalMomentum();
|
|---|
| 232 |
|
|---|
| 233 | static G4bool first = true;
|
|---|
| 234 | static G4double protmul[numMul], protnorm[numSec]; // proton constants
|
|---|
| 235 | static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
|
|---|
| 236 |
|
|---|
| 237 | // misc. local variables
|
|---|
| 238 | // np = number of pi+, nm = number of pi-, nz = number of pi0
|
|---|
| 239 |
|
|---|
| 240 | G4int i, counter, nt, np, nm, nz;
|
|---|
| 241 |
|
|---|
| 242 | if (first) {
|
|---|
| 243 | // compute normalization constants, this will only be done once
|
|---|
| 244 | first = false;
|
|---|
| 245 | for( i=0; i<numMul; i++ )protmul[i] = 0.0;
|
|---|
| 246 | for( i=0; i<numSec; i++ )protnorm[i] = 0.0;
|
|---|
| 247 | counter = -1;
|
|---|
| 248 | for (np=0; np<(numSec/3); np++) {
|
|---|
| 249 | for (nm=std::max(0,np-1); nm<=(np+1); nm++) {
|
|---|
| 250 | for (nz=0; nz<numSec/3; nz++) {
|
|---|
| 251 | if (++counter < numMul) {
|
|---|
| 252 | nt = np+nm+nz;
|
|---|
| 253 | if( (nt>0) && (nt<=numSec) ) {
|
|---|
| 254 | protmul[counter] = pmltpc(np,nm,nz,nt,protb,c) ;
|
|---|
| 255 | protnorm[nt-1] += protmul[counter];
|
|---|
| 256 | }
|
|---|
| 257 | }
|
|---|
| 258 | }
|
|---|
| 259 | }
|
|---|
| 260 | }
|
|---|
| 261 |
|
|---|
| 262 | for( i=0; i<numMul; i++ )neutmul[i] = 0.0;
|
|---|
| 263 | for( i=0; i<numSec; i++ )neutnorm[i] = 0.0;
|
|---|
| 264 | counter = -1;
|
|---|
| 265 | for (np=0; np<numSec/3; np++) {
|
|---|
| 266 | for (nm=np; nm<=(np+2); nm++) {
|
|---|
| 267 | for (nz=0; nz<numSec/3; nz++) {
|
|---|
| 268 | if (++counter < numMul) {
|
|---|
| 269 | nt = np+nm+nz;
|
|---|
| 270 | if( (nt>0) && (nt<=numSec) ) {
|
|---|
| 271 | neutmul[counter] = pmltpc(np,nm,nz,nt,neutb,c);
|
|---|
| 272 | neutnorm[nt-1] += neutmul[counter];
|
|---|
| 273 | }
|
|---|
| 274 | }
|
|---|
| 275 | }
|
|---|
| 276 | }
|
|---|
| 277 | }
|
|---|
| 278 |
|
|---|
| 279 | for (i=0; i<numSec; i++) {
|
|---|
| 280 | if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
|
|---|
| 281 | if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
|
|---|
| 282 | }
|
|---|
| 283 | } // end of initialization
|
|---|
| 284 |
|
|---|
| 285 |
|
|---|
| 286 | // Initialize the first two particles
|
|---|
| 287 | // the same as beam and target
|
|---|
| 288 | pv[0] = incidentParticle;
|
|---|
| 289 | pv[1] = targetParticle;
|
|---|
| 290 | vecLen = 2;
|
|---|
| 291 |
|
|---|
| 292 | if( !inElastic ) {
|
|---|
| 293 | // quasi-elastic scattering, no pions produced
|
|---|
| 294 | if( targetCode == protonCode) {
|
|---|
| 295 | G4double cech[] = {0.33,0.27,0.29,0.31,0.27,0.18,0.13,0.10,0.09,0.07};
|
|---|
| 296 | G4int iplab = G4int( std::min( 9.0, incidentTotalMomentum*5. ) );
|
|---|
| 297 | if( G4UniformRand() < cech[iplab]/std::pow(atomicWeight,0.42)) {
|
|---|
| 298 | // charge exchange K+ n -> K0 p
|
|---|
| 299 | pv[0] = KaonPlus;
|
|---|
| 300 | pv[1] = Neutron;
|
|---|
| 301 | }
|
|---|
| 302 | }
|
|---|
| 303 | return;
|
|---|
| 304 | } else if (availableEnergy <= PionPlus.getMass()) {
|
|---|
| 305 | return;
|
|---|
| 306 | }
|
|---|
| 307 |
|
|---|
| 308 | // Inelastic scattering
|
|---|
| 309 |
|
|---|
| 310 | np = 0, nm = 0, nz = 0;
|
|---|
| 311 | G4double eab = availableEnergy;
|
|---|
| 312 | G4int ieab = G4int( eab*5.0 );
|
|---|
| 313 |
|
|---|
| 314 | G4double supp[] = {0., 0.4, 0.55, 0.65, 0.75, 0.82, 0.86, 0.90, 0.94, 0.98};
|
|---|
| 315 | if( (ieab <= 9) && (G4UniformRand() >= supp[ieab])) {
|
|---|
| 316 | // Suppress high multiplicity events at low momentum
|
|---|
| 317 | // only one additional pion will be produced
|
|---|
| 318 | G4double w0, wp, wm, wt, ran;
|
|---|
| 319 | if (targetCode == neutronCode) {
|
|---|
| 320 | // target is a neutron
|
|---|
| 321 | w0 = - sqr(1.+protb)/(2.*c*c);
|
|---|
| 322 | w0 = std::exp(w0);
|
|---|
| 323 | wm = - sqr(-1.+protb)/(2.*c*c);
|
|---|
| 324 | wm = std::exp(wm);
|
|---|
| 325 | w0 = w0/2.;
|
|---|
| 326 | wm = wm*1.5;
|
|---|
| 327 | if (G4UniformRand() < w0/(w0+wm) ) {
|
|---|
| 328 | np = 0;
|
|---|
| 329 | nm = 0;
|
|---|
| 330 | nz = 1;
|
|---|
| 331 | } else {
|
|---|
| 332 | np = 0;
|
|---|
| 333 | nm = 1;
|
|---|
| 334 | nz = 0;
|
|---|
| 335 | }
|
|---|
| 336 |
|
|---|
| 337 | } else {
|
|---|
| 338 | // target is a proton
|
|---|
| 339 | w0 = -sqr(1.+neutb)/(2.*c*c);
|
|---|
| 340 | wp = w0 = std::exp(w0);
|
|---|
| 341 | wm = -sqr(-1.+neutb)/(2.*c*c);
|
|---|
| 342 | wm = std::exp(wm);
|
|---|
| 343 | wt = w0+wp+wm;
|
|---|
| 344 | wp = w0+wp;
|
|---|
| 345 | ran = G4UniformRand();
|
|---|
| 346 | if ( ran < w0/wt) {
|
|---|
| 347 | np = 0;
|
|---|
| 348 | nm = 0;
|
|---|
| 349 | nz = 1;
|
|---|
| 350 | } else if (ran < wp/wt) {
|
|---|
| 351 | np = 1;
|
|---|
| 352 | nm = 0;
|
|---|
| 353 | nz = 0;
|
|---|
| 354 | } else {
|
|---|
| 355 | np = 0;
|
|---|
| 356 | nm = 1;
|
|---|
| 357 | nz = 0;
|
|---|
| 358 | }
|
|---|
| 359 | }
|
|---|
| 360 | } else {
|
|---|
| 361 | // number of total particles vs. centre of mass Energy - 2*proton mass
|
|---|
| 362 |
|
|---|
| 363 | G4double aleab = std::log(availableEnergy);
|
|---|
| 364 | G4double n = 3.62567+aleab*(0.665843+aleab*(0.336514
|
|---|
| 365 | + aleab*(0.117712+0.0136912*aleab))) - 2.0;
|
|---|
| 366 |
|
|---|
| 367 | // Normalization constant for kno-distribution.
|
|---|
| 368 | // Calculate first the sum of all constants, check for numerical problems.
|
|---|
| 369 | G4double test, dum, anpn = 0.0;
|
|---|
| 370 |
|
|---|
| 371 | for (nt=1; nt<=numSec; nt++) {
|
|---|
| 372 | test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
|
|---|
| 373 | dum = pi*nt/(2.0*n*n);
|
|---|
| 374 | if (std::fabs(dum) < 1.0) {
|
|---|
| 375 | if( test >= 1.0e-10 )anpn += dum*test;
|
|---|
| 376 | } else {
|
|---|
| 377 | anpn += dum*test;
|
|---|
| 378 | }
|
|---|
| 379 | }
|
|---|
| 380 |
|
|---|
| 381 | G4double ran = G4UniformRand();
|
|---|
| 382 | G4double excs = 0.0;
|
|---|
| 383 | if( targetCode == protonCode )
|
|---|
| 384 | {
|
|---|
| 385 | counter = -1;
|
|---|
| 386 | for( np=0; np<numSec/3; np++ )
|
|---|
| 387 | {
|
|---|
| 388 | for( nm=std::max(0,np-1); nm<=(np+1); nm++ )
|
|---|
| 389 | {
|
|---|
| 390 | for (nz=0; nz<numSec/3; nz++) {
|
|---|
| 391 | if (++counter < numMul) {
|
|---|
| 392 | nt = np+nm+nz;
|
|---|
| 393 | if ( (nt>0) && (nt<=numSec) ) {
|
|---|
| 394 | test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
|
|---|
| 395 | dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
|
|---|
| 396 | if (std::fabs(dum) < 1.0) {
|
|---|
| 397 | if( test >= 1.0e-10 )excs += dum*test;
|
|---|
| 398 | } else {
|
|---|
| 399 | excs += dum*test;
|
|---|
| 400 | }
|
|---|
| 401 | if (ran < excs) goto outOfLoop; //----------------------->
|
|---|
| 402 | }
|
|---|
| 403 | }
|
|---|
| 404 | }
|
|---|
| 405 | }
|
|---|
| 406 | }
|
|---|
| 407 |
|
|---|
| 408 | // 3 previous loops continued to the end
|
|---|
| 409 | inElastic = false; // quasi-elastic scattering
|
|---|
| 410 | return;
|
|---|
| 411 | }
|
|---|
| 412 | else
|
|---|
| 413 | { // target must be a neutron
|
|---|
| 414 | counter = -1;
|
|---|
| 415 | for( np=0; np<numSec/3; np++ )
|
|---|
| 416 | {
|
|---|
| 417 | for( nm=np; nm<=(np+2); nm++ )
|
|---|
| 418 | {
|
|---|
| 419 | for (nz=0; nz<numSec/3; nz++) {
|
|---|
| 420 | if (++counter < numMul) {
|
|---|
| 421 | nt = np+nm+nz;
|
|---|
| 422 | if ( (nt>=1) && (nt<=numSec) ) {
|
|---|
| 423 | test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
|
|---|
| 424 | dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
|
|---|
| 425 | if (std::fabs(dum) < 1.0) {
|
|---|
| 426 | if( test >= 1.0e-10 )excs += dum*test;
|
|---|
| 427 | } else {
|
|---|
| 428 | excs += dum*test;
|
|---|
| 429 | }
|
|---|
| 430 | if (ran < excs) goto outOfLoop; // -------------------------->
|
|---|
| 431 | }
|
|---|
| 432 | }
|
|---|
| 433 | }
|
|---|
| 434 | }
|
|---|
| 435 | }
|
|---|
| 436 | // 3 previous loops continued to the end
|
|---|
| 437 | inElastic = false; // quasi-elastic scattering.
|
|---|
| 438 | return;
|
|---|
| 439 | }
|
|---|
| 440 | }
|
|---|
| 441 | outOfLoop: // <-----------------------------------------------
|
|---|
| 442 |
|
|---|
| 443 | if( targetCode == neutronCode)
|
|---|
| 444 | {
|
|---|
| 445 | if( np == nm)
|
|---|
| 446 | {
|
|---|
| 447 | }
|
|---|
| 448 | else if (np == (nm-1))
|
|---|
| 449 | {
|
|---|
| 450 | if( G4UniformRand() < 0.5)
|
|---|
| 451 | {
|
|---|
| 452 | pv[0] = KaonPlus;
|
|---|
| 453 | }
|
|---|
| 454 | else
|
|---|
| 455 | {
|
|---|
| 456 | pv[1] = Proton;
|
|---|
| 457 | }
|
|---|
| 458 | }
|
|---|
| 459 | else
|
|---|
| 460 | {
|
|---|
| 461 | pv[0] = KaonPlus;
|
|---|
| 462 | pv[1] = Proton;
|
|---|
| 463 | }
|
|---|
| 464 | }
|
|---|
| 465 | else
|
|---|
| 466 | {
|
|---|
| 467 | if( np == nm )
|
|---|
| 468 | {
|
|---|
| 469 | if( G4UniformRand() < 0.25)
|
|---|
| 470 | {
|
|---|
| 471 | pv[0] = KaonPlus;
|
|---|
| 472 | pv[1] = Neutron;
|
|---|
| 473 | }
|
|---|
| 474 | else
|
|---|
| 475 | {
|
|---|
| 476 | }
|
|---|
| 477 | }
|
|---|
| 478 | else if ( np == (nm+1))
|
|---|
| 479 | {
|
|---|
| 480 | pv[1] = Neutron;
|
|---|
| 481 | }
|
|---|
| 482 | else
|
|---|
| 483 | {
|
|---|
| 484 | pv[0] = KaonPlus;
|
|---|
| 485 | }
|
|---|
| 486 | }
|
|---|
| 487 |
|
|---|
| 488 | nt = np + nm + nz;
|
|---|
| 489 | while (nt > 0) {
|
|---|
| 490 | G4double ran = G4UniformRand();
|
|---|
| 491 | if (ran < (G4double)np/nt) {
|
|---|
| 492 | if (np > 0) {
|
|---|
| 493 | pv[vecLen++] = PionPlus;
|
|---|
| 494 | np--;
|
|---|
| 495 | }
|
|---|
| 496 | } else if ( ran < (G4double)(np+nm)/nt) {
|
|---|
| 497 | if (nm > 0) {
|
|---|
| 498 | pv[vecLen++] = PionMinus;
|
|---|
| 499 | nm--;
|
|---|
| 500 | }
|
|---|
| 501 | } else {
|
|---|
| 502 | if (nz > 0) {
|
|---|
| 503 | pv[vecLen++] = PionZero;
|
|---|
| 504 | nz--;
|
|---|
| 505 | }
|
|---|
| 506 | }
|
|---|
| 507 | nt = np + nm + nz;
|
|---|
| 508 | }
|
|---|
| 509 |
|
|---|
| 510 | if (verboseLevel > 1) {
|
|---|
| 511 | G4cout << "Particles produced: " ;
|
|---|
| 512 | G4cout << pv[0].getName() << " " ;
|
|---|
| 513 | G4cout << pv[1].getName() << " " ;
|
|---|
| 514 | for (i=2; i < vecLen; i++) G4cout << pv[i].getName() << " " ;
|
|---|
| 515 | G4cout << G4endl;
|
|---|
| 516 | }
|
|---|
| 517 |
|
|---|
| 518 | return;
|
|---|
| 519 | }
|
|---|
| 520 |
|
|---|
| 521 |
|
|---|
| 522 | void
|
|---|
| 523 | G4HEKaonZeroLongInelastic::FirstIntInCasAntiKaonZero(G4bool &inElastic,
|
|---|
| 524 | const G4double availableEnergy,
|
|---|
| 525 | G4HEVector pv[],
|
|---|
| 526 | G4int &vecLen,
|
|---|
| 527 | G4HEVector incidentParticle,
|
|---|
| 528 | G4HEVector targetParticle )
|
|---|
| 529 |
|
|---|
| 530 | // AntiKaon0 undergoes interaction with nucleon within a nucleus. Check if it is
|
|---|
| 531 | // energetically possible to produce pions/kaons. In not, assume nuclear excitation
|
|---|
| 532 | // occurs and input particle is degraded in energy. No other particles are produced.
|
|---|
| 533 | // If reaction is possible, find the correct number of pions/protons/neutrons
|
|---|
| 534 | // produced using an interpolation to multiplicity data. Replace some pions or
|
|---|
| 535 | // protons/neutrons by kaons or strange baryons according to the average
|
|---|
| 536 | // multiplicity per inelastic reaction.
|
|---|
| 537 |
|
|---|
| 538 | {
|
|---|
| 539 | static const G4double expxu = std::log(MAXFLOAT); // upper bound for arg. of exp
|
|---|
| 540 | static const G4double expxl = -expxu; // lower bound for arg. of exp
|
|---|
| 541 |
|
|---|
| 542 | static const G4double protb = 0.7;
|
|---|
| 543 | static const G4double neutb = 0.7;
|
|---|
| 544 | static const G4double c = 1.25;
|
|---|
| 545 |
|
|---|
| 546 | static const G4int numMul = 1200;
|
|---|
| 547 | static const G4int numSec = 60;
|
|---|
| 548 |
|
|---|
| 549 | G4int neutronCode = Neutron.getCode();
|
|---|
| 550 | G4int protonCode = Proton.getCode();
|
|---|
| 551 | G4int kaonMinusCode = KaonMinus.getCode();
|
|---|
| 552 | G4int kaonZeroCode = KaonZero.getCode();
|
|---|
| 553 | G4int antiKaonZeroCode = AntiKaonZero.getCode();
|
|---|
| 554 |
|
|---|
| 555 | G4int targetCode = targetParticle.getCode();
|
|---|
| 556 | G4double incidentTotalMomentum = incidentParticle.getTotalMomentum();
|
|---|
| 557 |
|
|---|
| 558 | static G4bool first = true;
|
|---|
| 559 | static G4double protmul[numMul], protnorm[numSec]; // proton constants
|
|---|
| 560 | static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
|
|---|
| 561 |
|
|---|
| 562 | // misc. local variables
|
|---|
| 563 | // np = number of pi+, nm = number of pi-, nz = number of pi0
|
|---|
| 564 |
|
|---|
| 565 | G4int i, counter, nt, np, nm, nz;
|
|---|
| 566 |
|
|---|
| 567 | if(first) {
|
|---|
| 568 | // compute normalization constants, this will only be done once
|
|---|
| 569 | first = false;
|
|---|
| 570 | for( i=0; i<numMul; i++ )protmul[i] = 0.0;
|
|---|
| 571 | for( i=0; i<numSec; i++ )protnorm[i] = 0.0;
|
|---|
| 572 | counter = -1;
|
|---|
| 573 | for(np=0; np<(numSec/3); np++) {
|
|---|
| 574 | for(nm=std::max(0,np-2); nm<=np; nm++) {
|
|---|
| 575 | for(nz=0; nz<numSec/3; nz++) {
|
|---|
| 576 | if(++counter < numMul) {
|
|---|
| 577 | nt = np+nm+nz;
|
|---|
| 578 | if( (nt>0) && (nt<=numSec) ) {
|
|---|
| 579 | protmul[counter] = pmltpc(np,nm,nz,nt,protb,c) ;
|
|---|
| 580 | protnorm[nt-1] += protmul[counter];
|
|---|
| 581 | }
|
|---|
| 582 | }
|
|---|
| 583 | }
|
|---|
| 584 | }
|
|---|
| 585 | }
|
|---|
| 586 |
|
|---|
| 587 | for( i=0; i<numMul; i++ )neutmul[i] = 0.0;
|
|---|
| 588 | for( i=0; i<numSec; i++ )neutnorm[i] = 0.0;
|
|---|
| 589 | counter = -1;
|
|---|
| 590 | for(np=0; np<numSec/3; np++) {
|
|---|
| 591 | for(nm=std::max(0,np-1); nm<=(np+1); nm++) {
|
|---|
| 592 | for(nz=0; nz<numSec/3; nz++) {
|
|---|
| 593 | if(++counter < numMul) {
|
|---|
| 594 | nt = np+nm+nz;
|
|---|
| 595 | if( (nt>0) && (nt<=numSec) ) {
|
|---|
| 596 | neutmul[counter] = pmltpc(np,nm,nz,nt,neutb,c);
|
|---|
| 597 | neutnorm[nt-1] += neutmul[counter];
|
|---|
| 598 | }
|
|---|
| 599 | }
|
|---|
| 600 | }
|
|---|
| 601 | }
|
|---|
| 602 | }
|
|---|
| 603 |
|
|---|
| 604 | for(i=0; i<numSec; i++) {
|
|---|
| 605 | if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
|
|---|
| 606 | if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
|
|---|
| 607 | }
|
|---|
| 608 | } // end of initialization
|
|---|
| 609 |
|
|---|
| 610 | // initialize the first two particles
|
|---|
| 611 | // the same as beam and target
|
|---|
| 612 | pv[0] = incidentParticle;
|
|---|
| 613 | pv[1] = targetParticle;
|
|---|
| 614 | vecLen = 2;
|
|---|
| 615 |
|
|---|
| 616 | if (!inElastic || (availableEnergy <= PionPlus.getMass()))
|
|---|
| 617 | return;
|
|---|
| 618 |
|
|---|
| 619 | // Inelastic scattering
|
|---|
| 620 |
|
|---|
| 621 | np = 0, nm = 0, nz = 0;
|
|---|
| 622 | G4double cech[] = { 1., 1., 1., 0.70, 0.60, 0.55, 0.35, 0.25, 0.18, 0.15};
|
|---|
| 623 | G4int iplab = G4int( incidentTotalMomentum*5.);
|
|---|
| 624 | if( (iplab < 10) && (G4UniformRand() < cech[iplab]) ) {
|
|---|
| 625 | G4int iplab = std::min(19, G4int( incidentTotalMomentum*5.));
|
|---|
| 626 | G4double cnk0[] = {0.17, 0.18, 0.17, 0.24, 0.26, 0.20, 0.22, 0.21, 0.34, 0.45,
|
|---|
| 627 | 0.58, 0.55, 0.36, 0.29, 0.29, 0.32, 0.32, 0.33, 0.33, 0.33};
|
|---|
| 628 | if(G4UniformRand() < cnk0[iplab]) {
|
|---|
| 629 | if(targetCode == protonCode) {
|
|---|
| 630 | return;
|
|---|
| 631 | } else {
|
|---|
| 632 | pv[0] = KaonMinus;
|
|---|
| 633 | pv[1] = Proton;
|
|---|
| 634 | return;
|
|---|
| 635 | }
|
|---|
| 636 | }
|
|---|
| 637 |
|
|---|
| 638 | G4double ran = G4UniformRand();
|
|---|
| 639 | if(targetCode == protonCode) {
|
|---|
| 640 |
|
|---|
| 641 | // target is a proton
|
|---|
| 642 | if( ran < 0.25 ) {
|
|---|
| 643 | ;
|
|---|
| 644 | } else if (ran < 0.50) {
|
|---|
| 645 | pv[0] = PionPlus;
|
|---|
| 646 | pv[1] = SigmaZero;
|
|---|
| 647 | } else if (ran < 0.75) {
|
|---|
| 648 | ;
|
|---|
| 649 | } else {
|
|---|
| 650 | pv[0] = PionPlus;
|
|---|
| 651 | pv[1] = Lambda;
|
|---|
| 652 | }
|
|---|
| 653 | } else {
|
|---|
| 654 |
|
|---|
| 655 | // target is a neutron
|
|---|
| 656 | if( ran < 0.25 ) {
|
|---|
| 657 | pv[0] = PionMinus;
|
|---|
| 658 | pv[1] = SigmaPlus;
|
|---|
| 659 | } else if (ran < 0.50) {
|
|---|
| 660 | pv[0] = PionZero;
|
|---|
| 661 | pv[1] = SigmaZero;
|
|---|
| 662 | } else if (ran < 0.75) {
|
|---|
| 663 | pv[0] = PionPlus;
|
|---|
| 664 | pv[1] = SigmaMinus;
|
|---|
| 665 | } else {
|
|---|
| 666 | pv[0] = PionZero;
|
|---|
| 667 | pv[1] = Lambda;
|
|---|
| 668 | }
|
|---|
| 669 | }
|
|---|
| 670 | return;
|
|---|
| 671 |
|
|---|
| 672 | } else {
|
|---|
| 673 | // number of total particles vs. centre of mass Energy - 2*proton mass
|
|---|
| 674 |
|
|---|
| 675 | G4double aleab = std::log(availableEnergy);
|
|---|
| 676 | G4double n = 3.62567+aleab*(0.665843+aleab*(0.336514
|
|---|
| 677 | + aleab*(0.117712+0.0136912*aleab))) - 2.0;
|
|---|
| 678 |
|
|---|
| 679 | // Normalization constant for kno-distribution.
|
|---|
| 680 | // Calculate first the sum of all constants, check for numerical problems.
|
|---|
| 681 | G4double test, dum, anpn = 0.0;
|
|---|
| 682 |
|
|---|
| 683 | for (nt=1; nt<=numSec; nt++) {
|
|---|
| 684 | test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
|
|---|
| 685 | dum = pi*nt/(2.0*n*n);
|
|---|
| 686 | if (std::fabs(dum) < 1.0) {
|
|---|
| 687 | if( test >= 1.0e-10 )anpn += dum*test;
|
|---|
| 688 | } else {
|
|---|
| 689 | anpn += dum*test;
|
|---|
| 690 | }
|
|---|
| 691 | }
|
|---|
| 692 |
|
|---|
| 693 | G4double ran = G4UniformRand();
|
|---|
| 694 | G4double excs = 0.0;
|
|---|
| 695 | if (targetCode == protonCode) {
|
|---|
| 696 | counter = -1;
|
|---|
| 697 | for (np=0; np<numSec/3; np++) {
|
|---|
| 698 | for (nm=std::max(0,np-2); nm<=np; nm++) {
|
|---|
| 699 | for (nz=0; nz<numSec/3; nz++) {
|
|---|
| 700 | if (++counter < numMul) {
|
|---|
| 701 | nt = np+nm+nz;
|
|---|
| 702 | if( (nt>0) && (nt<=numSec) ) {
|
|---|
| 703 | test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
|
|---|
| 704 | dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
|
|---|
| 705 |
|
|---|
| 706 | if (std::fabs(dum) < 1.0) {
|
|---|
| 707 | if( test >= 1.0e-10 )excs += dum*test;
|
|---|
| 708 | } else {
|
|---|
| 709 | excs += dum*test;
|
|---|
| 710 | }
|
|---|
| 711 |
|
|---|
| 712 | if (ran < excs) goto outOfLoop; //----------------------->
|
|---|
| 713 | }
|
|---|
| 714 | }
|
|---|
| 715 | }
|
|---|
| 716 | }
|
|---|
| 717 | }
|
|---|
| 718 | // 3 previous loops continued to the end
|
|---|
| 719 | inElastic = false; // quasi-elastic scattering
|
|---|
| 720 | return;
|
|---|
| 721 |
|
|---|
| 722 | } else { // target must be a neutron
|
|---|
| 723 | counter = -1;
|
|---|
| 724 | for (np=0; np<numSec/3; np++) {
|
|---|
| 725 | for (nm=std::max(0,np-1); nm<=(np+1); nm++) {
|
|---|
| 726 | for (nz=0; nz<numSec/3; nz++) {
|
|---|
| 727 | if (++counter < numMul) {
|
|---|
| 728 | nt = np+nm+nz;
|
|---|
| 729 | if( (nt>=1) && (nt<=numSec) ) {
|
|---|
| 730 | test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
|
|---|
| 731 | dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
|
|---|
| 732 |
|
|---|
| 733 | if (std::fabs(dum) < 1.0) {
|
|---|
| 734 | if( test >= 1.0e-10 )excs += dum*test;
|
|---|
| 735 | } else {
|
|---|
| 736 | excs += dum*test;
|
|---|
| 737 | }
|
|---|
| 738 |
|
|---|
| 739 | if (ran < excs) goto outOfLoop; // -------------------------->
|
|---|
| 740 | }
|
|---|
| 741 | }
|
|---|
| 742 | }
|
|---|
| 743 | }
|
|---|
| 744 | }
|
|---|
| 745 | // 3 previous loops continued to the end
|
|---|
| 746 | inElastic = false; // quasi-elastic scattering.
|
|---|
| 747 | return;
|
|---|
| 748 | }
|
|---|
| 749 | }
|
|---|
| 750 | outOfLoop: // <------------------------------------------------------------------------
|
|---|
| 751 |
|
|---|
| 752 | if( targetCode == protonCode)
|
|---|
| 753 | {
|
|---|
| 754 | if( np == nm)
|
|---|
| 755 | {
|
|---|
| 756 | }
|
|---|
| 757 | else if (np == (1+nm))
|
|---|
| 758 | {
|
|---|
| 759 | if( G4UniformRand() < 0.5)
|
|---|
| 760 | {
|
|---|
| 761 | pv[0] = KaonMinus;
|
|---|
| 762 | }
|
|---|
| 763 | else
|
|---|
| 764 | {
|
|---|
| 765 | pv[1] = Neutron;
|
|---|
| 766 | }
|
|---|
| 767 | }
|
|---|
| 768 | else
|
|---|
| 769 | {
|
|---|
| 770 | pv[0] = KaonMinus;
|
|---|
| 771 | pv[1] = Neutron;
|
|---|
| 772 | }
|
|---|
| 773 | }
|
|---|
| 774 | else
|
|---|
| 775 | {
|
|---|
| 776 | if( np == nm)
|
|---|
| 777 | {
|
|---|
| 778 | if( G4UniformRand() < 0.75)
|
|---|
| 779 | {
|
|---|
| 780 | }
|
|---|
| 781 | else
|
|---|
| 782 | {
|
|---|
| 783 | pv[0] = KaonMinus;
|
|---|
| 784 | pv[1] = Proton;
|
|---|
| 785 | }
|
|---|
| 786 | }
|
|---|
| 787 | else if ( np == (1+nm))
|
|---|
| 788 | {
|
|---|
| 789 | pv[0] = KaonMinus;
|
|---|
| 790 | }
|
|---|
| 791 | else
|
|---|
| 792 | {
|
|---|
| 793 | pv[1] = Proton;
|
|---|
| 794 | }
|
|---|
| 795 | }
|
|---|
| 796 |
|
|---|
| 797 |
|
|---|
| 798 | if( G4UniformRand() < 0.5 )
|
|---|
| 799 | {
|
|---|
| 800 | if( ( (pv[0].getCode() == kaonMinusCode)
|
|---|
| 801 | && (pv[1].getCode() == neutronCode) )
|
|---|
| 802 | || ( (pv[0].getCode() == kaonZeroCode)
|
|---|
| 803 | && (pv[1].getCode() == protonCode) )
|
|---|
| 804 | || ( (pv[0].getCode() == antiKaonZeroCode)
|
|---|
| 805 | && (pv[1].getCode() == protonCode) ) )
|
|---|
| 806 | {
|
|---|
| 807 | G4double ran = G4UniformRand();
|
|---|
| 808 | if( pv[1].getCode() == protonCode)
|
|---|
| 809 | {
|
|---|
| 810 | if(ran < 0.68)
|
|---|
| 811 | {
|
|---|
| 812 | pv[0] = PionPlus;
|
|---|
| 813 | pv[1] = Lambda;
|
|---|
| 814 | }
|
|---|
| 815 | else if (ran < 0.84)
|
|---|
| 816 | {
|
|---|
| 817 | pv[0] = PionZero;
|
|---|
| 818 | pv[1] = SigmaPlus;
|
|---|
| 819 | }
|
|---|
| 820 | else
|
|---|
| 821 | {
|
|---|
| 822 | pv[0] = PionPlus;
|
|---|
| 823 | pv[1] = SigmaZero;
|
|---|
| 824 | }
|
|---|
| 825 | }
|
|---|
| 826 | else
|
|---|
| 827 | {
|
|---|
| 828 | if(ran < 0.68)
|
|---|
| 829 | {
|
|---|
| 830 | pv[0] = PionMinus;
|
|---|
| 831 | pv[1] = Lambda;
|
|---|
| 832 | }
|
|---|
| 833 | else if (ran < 0.84)
|
|---|
| 834 | {
|
|---|
| 835 | pv[0] = PionMinus;
|
|---|
| 836 | pv[1] = SigmaZero;
|
|---|
| 837 | }
|
|---|
| 838 | else
|
|---|
| 839 | {
|
|---|
| 840 | pv[0] = PionZero;
|
|---|
| 841 | pv[1] = SigmaMinus;
|
|---|
| 842 | }
|
|---|
| 843 | }
|
|---|
| 844 | }
|
|---|
| 845 | else
|
|---|
| 846 | {
|
|---|
| 847 | G4double ran = G4UniformRand();
|
|---|
| 848 | if (ran < 0.67)
|
|---|
| 849 | {
|
|---|
| 850 | pv[0] = PionZero;
|
|---|
| 851 | pv[1] = Lambda;
|
|---|
| 852 | }
|
|---|
| 853 | else if (ran < 0.78)
|
|---|
| 854 | {
|
|---|
| 855 | pv[0] = PionMinus;
|
|---|
| 856 | pv[1] = SigmaPlus;
|
|---|
| 857 | }
|
|---|
| 858 | else if (ran < 0.89)
|
|---|
| 859 | {
|
|---|
| 860 | pv[0] = PionZero;
|
|---|
| 861 | pv[1] = SigmaZero;
|
|---|
| 862 | }
|
|---|
| 863 | else
|
|---|
| 864 | {
|
|---|
| 865 | pv[0] = PionPlus;
|
|---|
| 866 | pv[1] = SigmaMinus;
|
|---|
| 867 | }
|
|---|
| 868 | }
|
|---|
| 869 | }
|
|---|
| 870 |
|
|---|
| 871 | nt = np + nm + nz;
|
|---|
| 872 | while ( nt > 0) {
|
|---|
| 873 | G4double ran = G4UniformRand();
|
|---|
| 874 | if ( ran < (G4double)np/nt) {
|
|---|
| 875 | if( np > 0 ) {
|
|---|
| 876 | pv[vecLen++] = PionPlus;
|
|---|
| 877 | np--;
|
|---|
| 878 | }
|
|---|
| 879 | } else if (ran < (G4double)(np+nm)/nt) {
|
|---|
| 880 | if( nm > 0 ) {
|
|---|
| 881 | pv[vecLen++] = PionMinus;
|
|---|
| 882 | nm--;
|
|---|
| 883 | }
|
|---|
| 884 | } else {
|
|---|
| 885 | if( nz > 0 ) {
|
|---|
| 886 | pv[vecLen++] = PionZero;
|
|---|
| 887 | nz--;
|
|---|
| 888 | }
|
|---|
| 889 | }
|
|---|
| 890 | nt = np + nm + nz;
|
|---|
| 891 | }
|
|---|
| 892 |
|
|---|
| 893 | if (verboseLevel > 1) {
|
|---|
| 894 | G4cout << "Particles produced: " ;
|
|---|
| 895 | G4cout << pv[0].getName() << " " ;
|
|---|
| 896 | G4cout << pv[1].getName() << " " ;
|
|---|
| 897 | for (i=2; i < vecLen; i++) G4cout << pv[i].getName() << " " ;
|
|---|
| 898 | G4cout << G4endl;
|
|---|
| 899 | }
|
|---|
| 900 |
|
|---|
| 901 | return;
|
|---|
| 902 | }
|
|---|