| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 |
|
|---|
| 28 | #include "globals.hh"
|
|---|
| 29 | #include "G4ios.hh"
|
|---|
| 30 | #include "G4HadronicException.hh"
|
|---|
| 31 | #include "G4Clebsch.hh"
|
|---|
| 32 | #include "Randomize.hh"
|
|---|
| 33 | #include "G4Proton.hh"
|
|---|
| 34 | #include "G4HadTmpUtil.hh"
|
|---|
| 35 |
|
|---|
| 36 | G4Clebsch::G4Clebsch()
|
|---|
| 37 | {
|
|---|
| 38 | G4int nLogs = 101;
|
|---|
| 39 | logs.push_back(0.);
|
|---|
| 40 | G4int i;
|
|---|
| 41 | for (i=1; i<nLogs; i++)
|
|---|
| 42 | {
|
|---|
| 43 | G4double previousLog = logs.back();
|
|---|
| 44 | G4double value = previousLog + std::log((G4double)i);
|
|---|
| 45 | logs.push_back(value);
|
|---|
| 46 | }
|
|---|
| 47 | }
|
|---|
| 48 |
|
|---|
| 49 |
|
|---|
| 50 | G4Clebsch::~G4Clebsch()
|
|---|
| 51 | { }
|
|---|
| 52 |
|
|---|
| 53 |
|
|---|
| 54 | G4bool G4Clebsch::operator==(const G4Clebsch &right) const
|
|---|
| 55 | {
|
|---|
| 56 | return (this == (G4Clebsch *) &right);
|
|---|
| 57 | }
|
|---|
| 58 |
|
|---|
| 59 |
|
|---|
| 60 | G4bool G4Clebsch::operator!=(const G4Clebsch &right) const
|
|---|
| 61 | {
|
|---|
| 62 | return (this != (G4Clebsch *) &right);
|
|---|
| 63 | }
|
|---|
| 64 |
|
|---|
| 65 |
|
|---|
| 66 | const std::vector<G4double>& G4Clebsch::GetLogs() const
|
|---|
| 67 | {
|
|---|
| 68 | return logs;
|
|---|
| 69 | }
|
|---|
| 70 |
|
|---|
| 71 |
|
|---|
| 72 |
|
|---|
| 73 | G4double G4Clebsch::Weight(G4int isoIn1, G4int iso3In1,
|
|---|
| 74 | G4int isoIn2, G4int iso3In2,
|
|---|
| 75 | G4int isoOut1, G4int isoOut2) const
|
|---|
| 76 | {
|
|---|
| 77 | G4double value = 0.;
|
|---|
| 78 |
|
|---|
| 79 | G4int m = iso3In1 + iso3In2;
|
|---|
| 80 |
|
|---|
| 81 | G4int jMinIn = std::max(std::abs(isoIn1 - isoIn2), std::abs(m));
|
|---|
| 82 | G4int jMaxIn = isoIn1 + isoIn2;
|
|---|
| 83 |
|
|---|
| 84 | G4int jMinOut = std::max(std::abs(isoOut1 - isoOut2), std::abs(m));
|
|---|
| 85 | G4int jMaxOut = isoOut1 + isoOut2;
|
|---|
| 86 |
|
|---|
| 87 | G4int jMin = std::max(jMinIn,jMinOut);
|
|---|
| 88 | G4int jMax = std::min(jMaxIn,jMaxOut);
|
|---|
| 89 |
|
|---|
| 90 | G4int j;
|
|---|
| 91 | for (j=jMin; j<=jMax; j+=2)
|
|---|
| 92 | {
|
|---|
| 93 | value += ClebschGordan(isoIn1,iso3In1, isoIn2,iso3In2, j);
|
|---|
| 94 | }
|
|---|
| 95 |
|
|---|
| 96 | return value;
|
|---|
| 97 | }
|
|---|
| 98 |
|
|---|
| 99 |
|
|---|
| 100 | G4double G4Clebsch::ClebschGordan(G4int isoIn1, G4int iso3In1,
|
|---|
| 101 | G4int isoIn2, G4int iso3In2,
|
|---|
| 102 | G4int jOut) const
|
|---|
| 103 | {
|
|---|
| 104 | // Calculates Clebsch-Gordan coefficient
|
|---|
| 105 |
|
|---|
| 106 | G4double j1 = isoIn1 / 2.0;
|
|---|
| 107 | G4double j2 = isoIn2 / 2.0;
|
|---|
| 108 | G4double j3 = jOut / 2.0;
|
|---|
| 109 |
|
|---|
| 110 | G4double m1 = iso3In1 / 2.0;
|
|---|
| 111 | G4double m2 = iso3In2 / 2.0;
|
|---|
| 112 | G4double m3 = - (m1 + m2);
|
|---|
| 113 |
|
|---|
| 114 | G4int n = G4lrint(m3+j1+j2+.1);
|
|---|
| 115 | G4double argument = 2. * j3 + 1.;
|
|---|
| 116 | if (argument < 0.)
|
|---|
| 117 | throw G4HadronicException(__FILE__, __LINE__, "G4Clebsch::ClebschGordan - sqrt of negative argument");
|
|---|
| 118 | G4double coeff = std::sqrt(argument) / (std::pow(-1.,n));
|
|---|
| 119 | G4double clebsch = coeff * Wigner3J(j1,j2,j3, m1,m2,m3);
|
|---|
| 120 | G4double value = clebsch * clebsch;
|
|---|
| 121 |
|
|---|
| 122 | // G4cout << "ClebschGordan("
|
|---|
| 123 | // << isoIn1 << "," << iso3In1 << ","
|
|---|
| 124 | // << isoIn2 << "," << iso3In2 << "," << jOut
|
|---|
| 125 | // << ") = " << value << G4endl;
|
|---|
| 126 |
|
|---|
| 127 | return value;
|
|---|
| 128 | }
|
|---|
| 129 |
|
|---|
| 130 |
|
|---|
| 131 | G4double G4Clebsch::Wigner3J(G4double j1, G4double j2, G4double j3,
|
|---|
| 132 | G4double m1, G4double m2, G4double m3) const
|
|---|
| 133 | {
|
|---|
| 134 | // Calculates Wigner 3-j symbols
|
|---|
| 135 |
|
|---|
| 136 | G4double value = 0.;
|
|---|
| 137 |
|
|---|
| 138 | G4double sigma = j1 + j2 + j3;
|
|---|
| 139 | std::vector<G4double> n;
|
|---|
| 140 | n.push_back(-j1 + j2 + j3); // n0
|
|---|
| 141 | n.push_back(j1 - m1); // n1
|
|---|
| 142 | n.push_back(j1 + m1); // n2
|
|---|
| 143 | n.push_back(j1 - j2 + j3); // n3
|
|---|
| 144 | n.push_back(j2 - m2); // n4
|
|---|
| 145 | n.push_back(j2 + m2); // n5
|
|---|
| 146 | n.push_back(j1 + j2 - j3); // n6
|
|---|
| 147 | n.push_back(j3 - m3); // n7
|
|---|
| 148 | n.push_back(j3 + m3); // n8
|
|---|
| 149 |
|
|---|
| 150 | // Some preliminary checks
|
|---|
| 151 |
|
|---|
| 152 | G4bool ok = true;
|
|---|
| 153 | size_t i;
|
|---|
| 154 | for(i=1; i<=3; i++)
|
|---|
| 155 | {
|
|---|
| 156 | G4double sum1 = n[i-1] + n[i+2] + n[i+5];
|
|---|
| 157 | G4double sum2 = n[3*i-1] + n[3*i-2] + n[3*i-3];
|
|---|
| 158 | if (sum1 != sigma || sum2 != sigma) ok = false;
|
|---|
| 159 | G4int j;
|
|---|
| 160 | for(j=1; j<=3; j++)
|
|---|
| 161 | {
|
|---|
| 162 | if (n[i+3*j-4] < 0.) ok = false;
|
|---|
| 163 | }
|
|---|
| 164 | }
|
|---|
| 165 |
|
|---|
| 166 | if (ok)
|
|---|
| 167 | {
|
|---|
| 168 | G4int iMin = 1;
|
|---|
| 169 | G4int jMin = 1;
|
|---|
| 170 | G4double smallest = n[0];
|
|---|
| 171 |
|
|---|
| 172 | // Find the smallest n
|
|---|
| 173 | for (i=1; i<=3; i++)
|
|---|
| 174 | {
|
|---|
| 175 | G4int j;
|
|---|
| 176 | for (j=1; j<=3; j++)
|
|---|
| 177 | {
|
|---|
| 178 | if (n[i+3*j-4] < smallest)
|
|---|
| 179 | {
|
|---|
| 180 | smallest = n[i+3*j-4];
|
|---|
| 181 | iMin = i;
|
|---|
| 182 | jMin = j;
|
|---|
| 183 | }
|
|---|
| 184 | }
|
|---|
| 185 | }
|
|---|
| 186 |
|
|---|
| 187 | G4int sign = 1;
|
|---|
| 188 |
|
|---|
| 189 | if(iMin > 1)
|
|---|
| 190 | {
|
|---|
| 191 | for(G4int j=1; j<=3; ++j)
|
|---|
| 192 | {
|
|---|
| 193 | G4double tmp = n[j*3-3];
|
|---|
| 194 | n[j*3-3] = n[iMin+j*3-4];
|
|---|
| 195 | n[iMin+j*3-4] = tmp;
|
|---|
| 196 | }
|
|---|
| 197 | sign = (G4int) std::pow(-1.,sigma);
|
|---|
| 198 | }
|
|---|
| 199 |
|
|---|
| 200 | if (jMin > 1)
|
|---|
| 201 | {
|
|---|
| 202 | for(i=1; i<=3; i++)
|
|---|
| 203 | {
|
|---|
| 204 | G4double tmp = n[i-1];
|
|---|
| 205 | n[i-1] = n[i+jMin*3-4];
|
|---|
| 206 | n[i+jMin*3-4] = tmp;
|
|---|
| 207 | }
|
|---|
| 208 | sign *= (G4int) std::pow(-1.,sigma);
|
|---|
| 209 | }
|
|---|
| 210 |
|
|---|
| 211 | const std::vector<G4double> logVector = GetLogs();
|
|---|
| 212 | size_t n1 = G4lrint(n[0]);
|
|---|
| 213 |
|
|---|
| 214 | // Some boundary checks
|
|---|
| 215 | G4int logEntries = logVector.size() - 1;
|
|---|
| 216 | for (i=0; i<n.size(); i++)
|
|---|
| 217 | {
|
|---|
| 218 | if (n[i] < 0. || n[i] > logEntries)
|
|---|
| 219 | throw G4HadronicException(__FILE__, __LINE__, "G4Clebsch::Wigner3J - Outside logVector boundaries, n");
|
|---|
| 220 | }
|
|---|
| 221 |
|
|---|
| 222 | G4double r1 = n[0];
|
|---|
| 223 | G4double r2 = n[3];
|
|---|
| 224 | G4double r3 = n[6];
|
|---|
| 225 | G4double r4 = n[1];
|
|---|
| 226 | G4double r5 = n[4];
|
|---|
| 227 | G4double r6 = n[7];
|
|---|
| 228 | G4double r7 = n[2];
|
|---|
| 229 | G4double r8 = n[5];
|
|---|
| 230 | G4double r9 = n[8];
|
|---|
| 231 |
|
|---|
| 232 | G4double l1 = logVector[(G4int)r1];
|
|---|
| 233 | G4double l2 = logVector[(G4int)r2];
|
|---|
| 234 | G4double l3 = logVector[(G4int)r3];
|
|---|
| 235 | G4double l4 = logVector[(G4int)r4];
|
|---|
| 236 | G4double l5 = logVector[(G4int)r5];
|
|---|
| 237 | G4double l6 = logVector[(G4int)r6];
|
|---|
| 238 | G4double l7 = logVector[(G4int)r7];
|
|---|
| 239 | G4double l8 = logVector[(G4int)r8];
|
|---|
| 240 | G4double l9 = logVector[(G4int)r9];
|
|---|
| 241 |
|
|---|
| 242 | G4double sigma1 = sigma + 1.;
|
|---|
| 243 | if (sigma1 < 0. || sigma1 > logEntries)
|
|---|
| 244 | throw G4HadronicException(__FILE__, __LINE__, "G4Clebsch::Wigner3J - Outside logVector boundaries, sigma");
|
|---|
| 245 |
|
|---|
| 246 | G4double ls = logVector[static_cast<G4int>(sigma1+.00001)];
|
|---|
| 247 | G4double hlp1 = (l2 + l3 + l4 +l7 -ls -l1 -l5 -l9 -l6 -l8) / 2.;
|
|---|
| 248 | G4int expon = static_cast<G4int>(r6 + r8+.00001);
|
|---|
| 249 | G4double sgn = std::pow(-1., expon);
|
|---|
| 250 | G4double coeff = std::exp(hlp1) * sgn;
|
|---|
| 251 |
|
|---|
| 252 | G4int n61 = static_cast<G4int>(r6 - r1+.00001);
|
|---|
| 253 | if (n61 < 0. || n61 > logEntries)
|
|---|
| 254 | throw G4HadronicException(__FILE__, __LINE__, "G4Clebsch::Wigner3J - Outside logVector boundaries, n61");
|
|---|
| 255 | G4int n81 = static_cast<G4int>(r8 - r1+.00001);
|
|---|
| 256 | if (n81 < 0. || n81 > logEntries)
|
|---|
| 257 | throw G4HadronicException(__FILE__, __LINE__, "G4Clebsch::Wigner3J - Outside logVector boundaries, n81");
|
|---|
| 258 |
|
|---|
| 259 | G4double hlp2 = l6 - logVector[n61] + l8 - logVector[n81];
|
|---|
| 260 | G4double sum = std::exp(hlp2);
|
|---|
| 261 | std::vector<G4double> s;
|
|---|
| 262 | s.push_back(sum);
|
|---|
| 263 | n1 = (size_t)r1;
|
|---|
| 264 | for (i=1; i<=n1; i++)
|
|---|
| 265 | {
|
|---|
| 266 | G4double last = s.back();
|
|---|
| 267 | G4double den = i * (r6 - r1 + i) * (r8 - r1 + i);
|
|---|
| 268 | if (den == 0)
|
|---|
| 269 | throw G4HadronicException(__FILE__, __LINE__, "G4Clebsch::Wigner3J - divide by zero");
|
|---|
| 270 | G4double data = -last * (r1 + 1.0 - i) * (r5 + 1.0 - i) * (r9 + 1. - i) / den;
|
|---|
| 271 | s.push_back(data);
|
|---|
| 272 | sum += data;
|
|---|
| 273 | }
|
|---|
| 274 | value = coeff * sum * sign;
|
|---|
| 275 | } // endif ok
|
|---|
| 276 | else
|
|---|
| 277 | {
|
|---|
| 278 | }
|
|---|
| 279 |
|
|---|
| 280 |
|
|---|
| 281 | // G4cout << "Wigner3j("
|
|---|
| 282 | // << j1 << "," << j2 << "," << j3 << ","
|
|---|
| 283 | // << m1 << "," << m2 << "," << m3 << ") = "
|
|---|
| 284 | // << value
|
|---|
| 285 | // << G4endl;
|
|---|
| 286 |
|
|---|
| 287 | return value;
|
|---|
| 288 | }
|
|---|
| 289 |
|
|---|
| 290 |
|
|---|
| 291 |
|
|---|
| 292 | std::vector<G4double> G4Clebsch::GenerateIso3(G4int isoIn1, G4int iso3In1,
|
|---|
| 293 | G4int isoIn2, G4int iso3In2,
|
|---|
| 294 | G4int isoA, G4int isoB) const
|
|---|
| 295 | {
|
|---|
| 296 | std::vector<G4double> temp;
|
|---|
| 297 |
|
|---|
| 298 | // ---- Special cases first ----
|
|---|
| 299 |
|
|---|
| 300 | // Special case, both Jin are zero
|
|---|
| 301 | if (isoIn1 == 0 && isoIn2 == 0)
|
|---|
| 302 | {
|
|---|
| 303 | G4cout << "WARNING: G4Clebsch::GenerateIso3 - both isoIn are zero" << G4endl;
|
|---|
| 304 | temp.push_back(0.);
|
|---|
| 305 | temp.push_back(0.);
|
|---|
| 306 | return temp;
|
|---|
| 307 | }
|
|---|
| 308 |
|
|---|
| 309 | G4int iso3 = iso3In1 + iso3In2;
|
|---|
| 310 |
|
|---|
| 311 | // Special case, either Jout is zero
|
|---|
| 312 | if (isoA == 0)
|
|---|
| 313 | {
|
|---|
| 314 | temp.push_back(0.);
|
|---|
| 315 | temp.push_back(iso3);
|
|---|
| 316 | return temp;
|
|---|
| 317 | }
|
|---|
| 318 | if (isoB == 0)
|
|---|
| 319 | {
|
|---|
| 320 | temp.push_back(iso3);
|
|---|
| 321 | temp.push_back(0.);
|
|---|
| 322 | return temp;
|
|---|
| 323 | }
|
|---|
| 324 |
|
|---|
| 325 | // Number of possible states, in
|
|---|
| 326 | G4int jMinIn = std::max(std::abs(isoIn1 - isoIn2), std::abs(iso3));
|
|---|
| 327 | G4int jMaxIn = isoIn1 + isoIn2;
|
|---|
| 328 |
|
|---|
| 329 | // Number of possible states, out
|
|---|
| 330 |
|
|---|
| 331 | G4int jMinOut = 9999;
|
|---|
| 332 | G4int jTmp, i, j;
|
|---|
| 333 |
|
|---|
| 334 | for(i=-1; i<=1; i+=2)
|
|---|
| 335 | {
|
|---|
| 336 | for(j=-1; j<=1; j+=2)
|
|---|
| 337 | {
|
|---|
| 338 | jTmp= std::abs(i*isoA + j*isoB);
|
|---|
| 339 | if(jTmp < jMinOut) jMinOut = jTmp;
|
|---|
| 340 | }
|
|---|
| 341 | }
|
|---|
| 342 | jMinOut = std::max(jMinOut, std::abs(iso3));
|
|---|
| 343 | G4int jMaxOut = isoA + isoB;
|
|---|
| 344 |
|
|---|
| 345 | // Possible in and out common states
|
|---|
| 346 | G4int jMin = std::max(jMinIn, jMinOut);
|
|---|
| 347 | G4int jMax = std::min(jMaxIn, jMaxOut);
|
|---|
| 348 | if (jMin > jMax)
|
|---|
| 349 | {
|
|---|
| 350 | throw G4HadronicException(__FILE__, __LINE__, "G4Clebsch::GenerateIso3 - jMin > JMax");
|
|---|
| 351 | }
|
|---|
| 352 |
|
|---|
| 353 | // Number of possible isospins
|
|---|
| 354 | G4int nJ = (jMax - jMin) / 2 + 1;
|
|---|
| 355 |
|
|---|
| 356 | // A few consistency checks
|
|---|
| 357 |
|
|---|
| 358 | if ( (isoIn1 == 0 || isoIn2 == 0) && jMin != jMax )
|
|---|
| 359 | throw G4HadronicException(__FILE__, __LINE__, "G4Clebsch::GenerateIso3 - J1 or J2 = 0, but jMin != JMax");
|
|---|
| 360 |
|
|---|
| 361 | // MGP ---- Shall it be a warning or an exception?
|
|---|
| 362 | if (nJ == 0)
|
|---|
| 363 | throw G4HadronicException(__FILE__, __LINE__, "G4Clebsch::GenerateIso3 - nJ is zero, no overlap between in and out");
|
|---|
| 364 |
|
|---|
| 365 | // Loop over all possible combinations of isoIn1, isoIn2, iso3In11, iso3In2, jTot
|
|---|
| 366 | // to get the probability of each of the in-channel couplings
|
|---|
| 367 |
|
|---|
| 368 | std::vector<G4double> clebsch;
|
|---|
| 369 |
|
|---|
| 370 | for(j=jMin; j<=jMax; j+=2)
|
|---|
| 371 | {
|
|---|
| 372 | G4double cg = ClebschGordan(isoIn1, iso3In1, isoIn2, iso3In2, j);
|
|---|
| 373 | clebsch.push_back(cg);
|
|---|
| 374 | }
|
|---|
| 375 |
|
|---|
| 376 | // Consistency check
|
|---|
| 377 | if (static_cast<G4int>(clebsch.size()) != nJ)
|
|---|
| 378 | throw G4HadronicException(__FILE__, __LINE__, "G4Clebsch::GenerateIso3 - nJ inconsistency");
|
|---|
| 379 |
|
|---|
| 380 | G4double sum = clebsch[0];
|
|---|
| 381 |
|
|---|
| 382 | for (j=1; j<nJ; j++)
|
|---|
| 383 | {
|
|---|
| 384 | sum += clebsch[j];
|
|---|
| 385 | }
|
|---|
| 386 | // Consistency check
|
|---|
| 387 | if (sum <= 0.)
|
|---|
| 388 | throw G4HadronicException(__FILE__, __LINE__, "G4Clebsch::GenerateIso3 - Sum of Clebsch-Gordan probabilities <=0");
|
|---|
| 389 |
|
|---|
| 390 | // Generate a normalized pdf
|
|---|
| 391 |
|
|---|
| 392 | std::vector<G4double> clebschPdf;
|
|---|
| 393 | G4double previous = clebsch[0];
|
|---|
| 394 | clebschPdf.push_back(previous/sum);
|
|---|
| 395 | for (j=1; j<nJ; j++)
|
|---|
| 396 | {
|
|---|
| 397 | previous += clebsch[j];
|
|---|
| 398 | G4double prob = previous / sum;
|
|---|
| 399 | clebschPdf.push_back(prob);
|
|---|
| 400 | }
|
|---|
| 401 |
|
|---|
| 402 | // Generate a random jTot according to the Clebsch-Gordan pdf
|
|---|
| 403 | G4double rand = G4UniformRand();
|
|---|
| 404 | G4int jTot = 0;
|
|---|
| 405 | for (j=0; j<nJ; j++)
|
|---|
| 406 | {
|
|---|
| 407 | G4bool found = false;
|
|---|
| 408 | if (rand < clebschPdf[j])
|
|---|
| 409 | {
|
|---|
| 410 | found = true;
|
|---|
| 411 | jTot = jMin + 2*j;
|
|---|
| 412 | }
|
|---|
| 413 | if (found) break;
|
|---|
| 414 | }
|
|---|
| 415 |
|
|---|
| 416 | // Generate iso3Out
|
|---|
| 417 |
|
|---|
| 418 | std::vector<G4double> mMin;
|
|---|
| 419 | mMin.push_back(-isoA);
|
|---|
| 420 | mMin.push_back(-isoB);
|
|---|
| 421 |
|
|---|
| 422 | std::vector<G4double> mMax;
|
|---|
| 423 | mMax.push_back(isoA);
|
|---|
| 424 | mMax.push_back(isoB);
|
|---|
| 425 |
|
|---|
| 426 | // Calculate the possible |J_i M_i> combinations and their probability
|
|---|
| 427 |
|
|---|
| 428 | std::vector<G4double> m1Out;
|
|---|
| 429 | std::vector<G4double> m2Out;
|
|---|
| 430 |
|
|---|
| 431 | const G4int size = 20;
|
|---|
| 432 | G4double prbout[size][size];
|
|---|
| 433 |
|
|---|
| 434 | G4int m1pos(0), m2pos(0);
|
|---|
| 435 | G4int j12;
|
|---|
| 436 | G4int m1pr(0), m2pr(0);
|
|---|
| 437 |
|
|---|
| 438 | sum = 0.;
|
|---|
| 439 | for(j12 = std::abs(isoA-isoB); j12<=(isoA+isoB); j12+=2)
|
|---|
| 440 | {
|
|---|
| 441 | m1pos = -1;
|
|---|
| 442 | for (m1pr = static_cast<G4int>(mMin[0]+.00001); m1pr <= mMax[0]; m1pr+=2)
|
|---|
| 443 | {
|
|---|
| 444 | m1pos++;
|
|---|
| 445 | if (m1pos >= size)
|
|---|
| 446 | throw G4HadronicException(__FILE__, __LINE__, "G4Clebsch::GenerateIso3 - m1pos > size");
|
|---|
| 447 | m1Out.push_back(m1pr);
|
|---|
| 448 | m2pos = -1;
|
|---|
| 449 | for (m2pr = static_cast<G4int>(mMin[1]+.00001); m2pr <= mMax[1]; m2pr+=2)
|
|---|
| 450 | {
|
|---|
| 451 | m2pos++;
|
|---|
| 452 | if (m2pos >= size)
|
|---|
| 453 | {
|
|---|
| 454 | throw G4HadronicException(__FILE__, __LINE__, "G4Clebsch::GenerateIso3 - m2pos > size");
|
|---|
| 455 | }
|
|---|
| 456 | m2Out.push_back(m2pr);
|
|---|
| 457 |
|
|---|
| 458 | if(m1pr + m2pr == iso3)
|
|---|
| 459 | {
|
|---|
| 460 | G4int m12 = m1pr + m2pr;
|
|---|
| 461 | G4double c12 = ClebschGordan(isoA, m1pr, isoB,m2pr, j12);
|
|---|
| 462 | G4double c34 = ClebschGordan(0,0,0,0,0);
|
|---|
| 463 | G4double ctot = ClebschGordan(j12, m12, 0, 0, jTot);
|
|---|
| 464 | G4double cleb = c12*c34*ctot;
|
|---|
| 465 | prbout[m1pos][m2pos] = cleb;
|
|---|
| 466 | sum += cleb;
|
|---|
| 467 | }
|
|---|
| 468 | else
|
|---|
| 469 | {
|
|---|
| 470 | prbout[m1pos][m2pos] = 0.;
|
|---|
| 471 | }
|
|---|
| 472 | }
|
|---|
| 473 | }
|
|---|
| 474 | }
|
|---|
| 475 |
|
|---|
| 476 | if (sum <= 0.)
|
|---|
| 477 | throw G4HadronicException(__FILE__, __LINE__, "G4Clebsch::GenerateIso3 - sum (out) <=0");
|
|---|
| 478 |
|
|---|
| 479 | for (i=0; i<size; i++)
|
|---|
| 480 | {
|
|---|
| 481 | for (j=0; j<size; j++)
|
|---|
| 482 | {
|
|---|
| 483 | prbout[i][j] /= sum;
|
|---|
| 484 | }
|
|---|
| 485 | }
|
|---|
| 486 |
|
|---|
| 487 | rand = G4UniformRand();
|
|---|
| 488 |
|
|---|
| 489 | G4int m1p, m2p;
|
|---|
| 490 |
|
|---|
| 491 | for (m1p=0; m1p<m1pos; m1p++)
|
|---|
| 492 | {
|
|---|
| 493 | for (m2p=0; m2p<m2pos; m2p++)
|
|---|
| 494 | {
|
|---|
| 495 | if (rand < prbout[m1p][m2p])
|
|---|
| 496 | {
|
|---|
| 497 | temp.push_back(m1Out[m1p]);
|
|---|
| 498 | temp.push_back(m2Out[m2p]);
|
|---|
| 499 | return temp;
|
|---|
| 500 | }
|
|---|
| 501 | else
|
|---|
| 502 | {
|
|---|
| 503 | rand -= prbout[m1p][m2p];
|
|---|
| 504 | }
|
|---|
| 505 | }
|
|---|
| 506 | }
|
|---|
| 507 |
|
|---|
| 508 | throw G4HadronicException(__FILE__, __LINE__, "Should never get here ");
|
|---|
| 509 | return temp;
|
|---|
| 510 | }
|
|---|
| 511 |
|
|---|
| 512 |
|
|---|
| 513 | G4double G4Clebsch::NormalizedClebschGordan(G4int J, G4int m,
|
|---|
| 514 | G4int J1, G4int J2,
|
|---|
| 515 | G4int m1, G4int m2) const
|
|---|
| 516 | {
|
|---|
| 517 | // Calculate the normalized Clebsch-Gordan coefficient, that is the prob
|
|---|
| 518 | // of isospin decomposition of (J,m) into J1, J2, m1, m2
|
|---|
| 519 |
|
|---|
| 520 | G4double cleb = 0.;
|
|---|
| 521 |
|
|---|
| 522 | if(J1 == 0 || J2 == 0) return cleb;
|
|---|
| 523 |
|
|---|
| 524 | G4double sum = 0.0;
|
|---|
| 525 |
|
|---|
| 526 | // Loop over all J1,J2,Jtot,m1,m2 combinations
|
|---|
| 527 |
|
|---|
| 528 | for(G4int m1Current=-J1; m1Current<=J1; m1Current+=2)
|
|---|
| 529 | {
|
|---|
| 530 | G4int m2Current = m - m1Current;
|
|---|
| 531 |
|
|---|
| 532 | G4double prob = ClebschGordan(J1, m1Current, J2, m2Current, J);
|
|---|
| 533 | sum += prob;
|
|---|
| 534 | if (m2Current == m2 && m1Current == m1) cleb += prob;
|
|---|
| 535 | }
|
|---|
| 536 |
|
|---|
| 537 | // Normalize probs to 1
|
|---|
| 538 | if (sum > 0.) cleb /= sum;
|
|---|
| 539 |
|
|---|
| 540 | return cleb;
|
|---|
| 541 | }
|
|---|