// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // $Id: G4AblaEvaporation.cc,v 1.4 2008/10/24 21:07:40 dennis Exp $ // #include // #include "G4IonTable.hh" // #include "globals.hh" // #include "G4V3DNucleus.hh" // #include "G4DynamicParticleVector.hh" // #include "G4EvaporationInuclCollider.hh" // #include "G4InuclEvaporation.hh" // #include "G4InuclNuclei.hh" // #include "G4Track.hh" // #include "G4Nucleus.hh" // #include "G4Nucleon.hh" // #include "G4NucleiModel.hh" #include "G4HadronicException.hh" // #include "G4LorentzVector.hh" // #include "G4EquilibriumEvaporator.hh" // #include "G4Fissioner.hh" // #include "G4BigBanger.hh" // #include "G4InuclElementaryParticle.hh" // #include "G4InuclParticle.hh" // #include "G4CollisionOutput.hh" #include "G4AblaEvaporation.hh" #include "G4PionPlus.hh" #include "G4PionMinus.hh" #include "G4PionZero.hh" G4AblaEvaporation::G4AblaEvaporation() { verboseLevel=0; hazard = new G4Hazard(); // set initial values: // First random seed: // (Premiere graine) // hazard->ial = 38035; hazard->ial = 979678188; // other seeds: hazard->igraine[0] = 3997; hazard->igraine[1] = 15573; hazard->igraine[2] = 9971; hazard->igraine[3] = 9821; hazard->igraine[4] = 99233; hazard->igraine[5] = 11167; hazard->igraine[6] = 12399; hazard->igraine[7] = 11321; hazard->igraine[8] = 9825; hazard->igraine[9] = 2587; hazard->igraine[10] = 1775; hazard->igraine[11] = 56799; hazard->igraine[12] = 1156; // hazard->igraine[13] = 11207; hazard->igraine[13] = 38957; hazard->igraine[14] = 35779; hazard->igraine[15] = 10055; hazard->igraine[16] = 76533; hazard->igraine[17] = 33759; hazard->igraine[18] = 13227; } G4AblaEvaporation::G4AblaEvaporation(const G4AblaEvaporation &) : G4VEvaporation() { throw G4HadronicException(__FILE__, __LINE__, "G4AblaEvaporation::copy_constructor meant to not be accessable."); } G4AblaEvaporation::~G4AblaEvaporation() { } const G4AblaEvaporation & G4AblaEvaporation::operator=(const G4AblaEvaporation &) { throw G4HadronicException(__FILE__, __LINE__, "G4AblaEvaporation::operator= meant to not be accessable."); return *this; } G4bool G4AblaEvaporation::operator==(const G4AblaEvaporation &) const { return false; } G4bool G4AblaEvaporation::operator!=(const G4AblaEvaporation &) const { return true; } void G4AblaEvaporation::setVerboseLevel( const G4int verbose ) { verboseLevel = verbose; } G4FragmentVector * G4AblaEvaporation::BreakItUp(const G4Fragment &theNucleus) { G4VarNtp *varntp = new G4VarNtp(); G4Volant *volant = new G4Volant(); G4Abla *abla = new G4Abla(hazard, volant, varntp); G4cout <<"Initializing evaporation..." << G4endl; abla->initEvapora(); G4cout <<"Initialization complete!" << G4endl; G4double nucleusA = theNucleus.GetA(); G4double nucleusZ = theNucleus.GetZ(); G4double nucleusMass = G4NucleiProperties::GetNuclearMass(nucleusA, nucleusZ); G4double excitationEnergy = theNucleus.GetExcitationEnergy(); G4double angularMomentum = 0.0; // Don't know how to get this quantity... From Geant4??? G4LorentzVector tmp = theNucleus.GetMomentum(); G4ThreeVector momentum = tmp.vect(); G4double recoilEnergy = tmp.e(); G4double momX = momentum.x(); G4double momY = momentum.y(); G4double momZ = momentum.z(); // G4double energy = tmp.e(); G4double exitationE = theNucleus.GetExcitationEnergy() * MeV; varntp->ntrack = -1; varntp->massini = theNucleus.GetA(); varntp->mzini = theNucleus.GetZ(); std::vector cascadeParticles; G4FragmentVector * theResult = new G4FragmentVector; if (theNucleus.GetExcitationEnergy() <= 0.0) { // Check that Excitation Energy > 0 theResult->push_back(new G4Fragment(theNucleus)); return theResult; } // G4double mTar = G4NucleiProperties::GetNuclearMass(A, Z); // Mass of the target nucleus varntp->exini = exitationE; G4int particleI, n = 0; // Print diagnostic messages. 0 = silent, 1 and 2 = verbose // verboseLevel = 3; // Increase the event number: eventNumber++; G4DynamicParticle *cascadeParticle = 0; // G4ParticleDefinition *aParticleDefinition = 0; // Map Geant4 particle types to corresponding INCL4 types. enum bulletParticleType {nucleus = 0, proton = 1, neutron = 2, pionPlus = 3, pionZero = 4, pionMinus = 5, deuteron = 6, triton = 7, he3 = 8, he4 = 9}; // Check wheter the input is acceptable. This will contain more tests in the future. // void breakItUp(G4double nucleusA, G4double nucleusZ, G4double nucleusMass, G4double excitationEnergy, // G4double angularMomentum, G4double recoilEnergy, G4double momX, G4double momY, G4double momZ) G4cout <<"Calling the actual ABLA model..." << G4endl; G4cout <<"Excitation energy: " << excitationEnergy << G4endl; abla->breakItUp(nucleusA, nucleusZ, nucleusMass, excitationEnergy, angularMomentum, recoilEnergy, momX, momY, momZ, eventNumber); G4cout <<"Done." << G4endl; if(verboseLevel > 0) { // Diagnostic output G4cout <<"G4AblaEvaporation: Target A: " << nucleusA << G4endl; G4cout <<"G4AblaEvaporation: Target Z: " << nucleusZ << G4endl; for(particleI = 0; particleI < varntp->ntrack; particleI++) { G4cout << n << " "; G4cout << varntp->massini << " " << varntp->mzini << " "; G4cout << varntp->exini << " " << varntp->mulncasc << " " << varntp->mulnevap << " " << varntp->mulntot << " "; G4cout << varntp->bimpact << " " << varntp->jremn << " " << varntp->kfis << " " << varntp->estfis << " "; G4cout << varntp->izfis << " " << varntp->iafis << " " << varntp->ntrack << " " << varntp->itypcasc[particleI] << " "; G4cout << varntp->avv[particleI] << " " << varntp->zvv[particleI] << " " << varntp->enerj[particleI] << " "; G4cout << varntp->plab[particleI] << " " << varntp->tetlab[particleI] << " " << varntp->philab[particleI] << G4endl; } } // Loop through the INCL4+ABLA output. G4double momx, momy, momz; // Momentum components of the outcoming particles. G4double eKin; G4cout <<"varntp->ntrack = " << varntp->ntrack << G4endl; for(particleI = 0; particleI < varntp->ntrack; particleI++) { // Get energy/momentum and construct momentum vector: // In INCL4 coordinates! momx = varntp->plab[particleI]*std::cos(varntp->tetlab[particleI]*CLHEP::pi/180.0)*std::sin(varntp->philab[particleI]*CLHEP::pi/180.0)*MeV; momy = varntp->plab[particleI]*std::sin(varntp->tetlab[particleI]*CLHEP::pi/180.0)*std::sin(varntp->philab[particleI]*CLHEP::pi/180.0)*MeV; momz = varntp->plab[particleI]*std::cos(varntp->tetlab[particleI]*CLHEP::pi/180.0)*MeV; eKin = varntp->enerj[particleI] * MeV; if(verboseLevel > 1) { // G4cout <<"Momentum direction: (x ,y,z)"; // G4cout << "(" << momx <<"," << momy << "," << momz << ")" << G4endl; } // This vector tells the direction of the particle. G4ThreeVector momDirection(momx, momy, momz); momDirection = momDirection.unit(); // Identify the particle/nucleus: G4int particleIdentified = 0; // Proton if((varntp->avv[particleI] == 1) && (varntp->zvv[particleI] == 1)) { cascadeParticle = new G4DynamicParticle(G4Proton::ProtonDefinition(), momDirection, eKin); particleIdentified++; } // Neutron if((varntp->avv[particleI] == 1) && (varntp->zvv[particleI] == 0)) { cascadeParticle = new G4DynamicParticle(G4Neutron::NeutronDefinition(), momDirection, eKin); particleIdentified++; } // PionPlus if((varntp->avv[particleI] == -1) && (varntp->zvv[particleI] == 1)) { cascadeParticle = new G4DynamicParticle(G4PionPlus::PionPlusDefinition(), momDirection, eKin); particleIdentified++; } // PionZero if((varntp->avv[particleI] == -1) && (varntp->zvv[particleI] == 0)) { cascadeParticle = new G4DynamicParticle(G4PionZero::PionZeroDefinition(), momDirection, eKin); particleIdentified++; } // PionMinus if((varntp->avv[particleI] == -1) && (varntp->zvv[particleI] == -1)) { cascadeParticle = new G4DynamicParticle(G4PionMinus::PionMinusDefinition(), momDirection, eKin); particleIdentified++; } // Nuclei fragment if((varntp->avv[particleI] > 1) && (varntp->zvv[particleI] >= 1)) { G4ParticleDefinition * aIonDef = 0; G4ParticleTable *theTableOfParticles = G4ParticleTable::GetParticleTable(); G4int A = G4int(varntp->avv[particleI]); G4int Z = G4int(varntp->zvv[particleI]); aIonDef = theTableOfParticles->FindIon(Z, A, 0, Z); cascadeParticle = new G4DynamicParticle(aIonDef, momDirection, eKin); particleIdentified++; } // Check that the particle was identified properly. if(particleIdentified == 1) { // Put data into G4HadFinalState: cascadeParticle->Set4Momentum(cascadeParticle->Get4Momentum()); cascadeParticles.push_back(cascadeParticle); // theResult.AddSecondary(cascadeParticle); } // Particle identification failed. Checking why... else { // Particle was identified as more than one particle type. if(particleIdentified > 1) { G4cout <<"G4InclCascadeInterface: One outcoming particle was identified as"; G4cout <<"more than one particle type. This is probably due to a bug in the interface." << G4endl; G4cout <<"Particle A:" << varntp->avv[particleI] << "Z: " << varntp->zvv[particleI] << G4endl; G4cout << "(particleIdentified =" << particleIdentified << ")" << G4endl; } } } // End of conversion // Clean up: Clean up the number of generated particles in the // common block VARNTP_ for the processing of the next event. varntp->ntrack = 0; // End of cleanup. // Free allocated memory delete varntp; delete abla; fillResult(cascadeParticles, theResult); return theResult; } void G4AblaEvaporation::fillResult( std::vector secondaryParticleVector, G4FragmentVector * aResult ) { // Fill the vector pParticleChange with secondary particles stored in vector. G4cout <<"Size of the secondary particle vector = " << secondaryParticleVector.size() << G4endl; for ( size_t i = 0 ; i < secondaryParticleVector.size() ; i++ ) { G4int aZ = static_cast (secondaryParticleVector[i]->GetDefinition()->GetPDGCharge() ); G4int aA = static_cast (secondaryParticleVector[i]->GetDefinition()->GetBaryonNumber()); G4LorentzVector aMomentum = secondaryParticleVector[i]->Get4Momentum(); if(aA>0) { aResult->push_back( new G4Fragment(aA, aZ, aMomentum) ); } else { aResult->push_back( new G4Fragment(aMomentum, secondaryParticleVector[i]->GetDefinition()) ); } } return; }