| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | // $Id: G4AblaFission.cc,v 1.3 2008/11/06 08:42:00 gcosmo Exp $
|
|---|
| 27 | // Translation of INCL4.2/ABLA V3
|
|---|
| 28 | // Pekka Kaitaniemi, HIP (translation)
|
|---|
| 29 | // Christelle Schmidt, IPNL (fission code)
|
|---|
| 30 | // Alain Boudard, CEA (contact person INCL/ABLA)
|
|---|
| 31 | // Aatos Heikkinen, HIP (project coordination)
|
|---|
| 32 |
|
|---|
| 33 | #include "G4AblaFission.hh"
|
|---|
| 34 | #include <time.h>
|
|---|
| 35 |
|
|---|
| 36 | G4AblaFission::G4AblaFission()
|
|---|
| 37 | {
|
|---|
| 38 | }
|
|---|
| 39 |
|
|---|
| 40 | G4AblaFission::G4AblaFission(G4Hazard *hzr, G4InclRandomInterface *rndm)
|
|---|
| 41 | {
|
|---|
| 42 | hazard = hzr;
|
|---|
| 43 | randomGenerator = rndm;
|
|---|
| 44 | setAboutString("Fission model: Based on ABLA V3 and SimFis3");
|
|---|
| 45 | }
|
|---|
| 46 |
|
|---|
| 47 | G4AblaFission::~G4AblaFission()
|
|---|
| 48 | {
|
|---|
| 49 | }
|
|---|
| 50 |
|
|---|
| 51 | void G4AblaFission::doFission(G4double &A, G4double &Z, G4double &E,
|
|---|
| 52 | G4double &A1, G4double &Z1, G4double &E1, G4double &K1,
|
|---|
| 53 | G4double &A2, G4double &Z2, G4double &E2, G4double &K2)
|
|---|
| 54 | {
|
|---|
| 55 | fissionDistri(A,Z,E,A1,Z1,E1,K1,A2,Z2,E2,K2);
|
|---|
| 56 | }
|
|---|
| 57 |
|
|---|
| 58 | void G4AblaFission::even_odd(G4double r_origin,G4double r_even_odd,G4int &i_out)
|
|---|
| 59 | {
|
|---|
| 60 | // Procedure to calculate I_OUT from R_IN in a way that
|
|---|
| 61 | // on the average a flat distribution in R_IN results in a
|
|---|
| 62 | // fluctuating distribution in I_OUT with an even-odd effect as
|
|---|
| 63 | // given by R_EVEN_ODD
|
|---|
| 64 |
|
|---|
| 65 | // /* ------------------------------------------------------------ */
|
|---|
| 66 | // /* EXAMPLES : */
|
|---|
| 67 | // /* ------------------------------------------------------------ */
|
|---|
| 68 | // /* If R_EVEN_ODD = 0 : */
|
|---|
| 69 | // /* CEIL(R_IN) ---- */
|
|---|
| 70 | // /* */
|
|---|
| 71 | // /* R_IN -> */
|
|---|
| 72 | // /* (somewhere in between CEIL(R_IN) and FLOOR(R_IN)) */ */
|
|---|
| 73 | // /* */
|
|---|
| 74 | // /* FLOOR(R_IN) ---- --> I_OUT */
|
|---|
| 75 | // /* ------------------------------------------------------------ */
|
|---|
| 76 | // /* If R_EVEN_ODD > 0 : */
|
|---|
| 77 | // /* The interval for the above treatment is */
|
|---|
| 78 | // /* larger for FLOOR(R_IN) = even and */
|
|---|
| 79 | // /* smaller for FLOOR(R_IN) = odd */
|
|---|
| 80 | // /* For R_EVEN_ODD < 0 : just opposite treatment */
|
|---|
| 81 | // /* ------------------------------------------------------------ */
|
|---|
| 82 |
|
|---|
| 83 | // /* ------------------------------------------------------------ */
|
|---|
| 84 | // /* On input: R_ORIGIN nuclear charge (real number) */
|
|---|
| 85 | // /* R_EVEN_ODD requested even-odd effect */
|
|---|
| 86 | // /* Intermediate quantity: R_IN = R_ORIGIN + 0.5 */
|
|---|
| 87 | // /* On output: I_OUT nuclear charge (integer) */
|
|---|
| 88 | // /* ------------------------------------------------------------ */
|
|---|
| 89 |
|
|---|
| 90 | // G4double R_ORIGIN,R_IN,R_EVEN_ODD,R_REST,R_HELP;
|
|---|
| 91 | G4double r_in = 0.0, r_rest = 0.0, r_help = 0.0;
|
|---|
| 92 | G4double r_floor = 0.0;
|
|---|
| 93 | G4double r_middle = 0.0;
|
|---|
| 94 | // G4int I_OUT,N_FLOOR;
|
|---|
| 95 | G4int n_floor = 0;
|
|---|
| 96 |
|
|---|
| 97 | r_in = r_origin + 0.5;
|
|---|
| 98 | r_floor = (float)((int)(r_in));
|
|---|
| 99 | if (r_even_odd < 0.001) {
|
|---|
| 100 | i_out = (int)(r_floor);
|
|---|
| 101 | }
|
|---|
| 102 | else {
|
|---|
| 103 | r_rest = r_in - r_floor;
|
|---|
| 104 | r_middle = r_floor + 0.5;
|
|---|
| 105 | n_floor = (int)(r_floor);
|
|---|
| 106 | if (n_floor%2 == 0) {
|
|---|
| 107 | // even before modif.
|
|---|
| 108 | r_help = r_middle + (r_rest - 0.5) * (1.0 - r_even_odd);
|
|---|
| 109 | }
|
|---|
| 110 | else {
|
|---|
| 111 | // odd before modification
|
|---|
| 112 | r_help = r_middle + (r_rest - 0.5) * (1.0 + r_even_odd);
|
|---|
| 113 | }
|
|---|
| 114 | i_out = (int)(r_help);
|
|---|
| 115 | }
|
|---|
| 116 | }
|
|---|
| 117 |
|
|---|
| 118 | G4double G4AblaFission::umass(G4double z,G4double n,G4double beta)
|
|---|
| 119 | {
|
|---|
| 120 | // liquid-drop mass, Myers & Swiatecki, Lysekil, 1967
|
|---|
| 121 | // pure liquid drop, without pairing and shell effects
|
|---|
| 122 |
|
|---|
| 123 | // On input: Z nuclear charge of nucleus
|
|---|
| 124 | // N number of neutrons in nucleus
|
|---|
| 125 | // beta deformation of nucleus
|
|---|
| 126 | // On output: binding energy of nucleus
|
|---|
| 127 |
|
|---|
| 128 | G4double a = 0.0, umass = 0.0;
|
|---|
| 129 | G4double alpha = 0.0;
|
|---|
| 130 | G4double xcom = 0.0, xvs = 0.0, xe = 0.0;
|
|---|
| 131 | const G4double pi = 3.1416;
|
|---|
| 132 |
|
|---|
| 133 | a = n + z;
|
|---|
| 134 | alpha = ( std::sqrt(5.0/(4.0*pi)) ) * beta;
|
|---|
| 135 |
|
|---|
| 136 | xcom = 1.0 - 1.7826 * ((a - 2.0*z)/a)*((a - 2.0*z)/a);
|
|---|
| 137 | // factor for asymmetry dependence of surface and volume term
|
|---|
| 138 | xvs = - xcom * ( 15.4941 * a -
|
|---|
| 139 | 17.9439 * std::pow(a,2.0/3.0) * (1.0+0.4*alpha*alpha) );
|
|---|
| 140 | // sum of volume and surface energy
|
|---|
| 141 | xe = z*z * (0.7053/(std::pow(a,1.0/3.0)) * (1.0-0.2*alpha*alpha) - 1.1529/a);
|
|---|
| 142 | umass = xvs + xe;
|
|---|
| 143 |
|
|---|
| 144 | return umass;
|
|---|
| 145 | }
|
|---|
| 146 |
|
|---|
| 147 | G4double G4AblaFission::ecoul(G4double z1,G4double n1,G4double beta1,G4double z2,G4double n2,G4double beta2,G4double d)
|
|---|
| 148 | {
|
|---|
| 149 | // Coulomb potential between two nuclei
|
|---|
| 150 | // surfaces are in a distance of d
|
|---|
| 151 | // in a tip to tip configuration
|
|---|
| 152 |
|
|---|
| 153 | // approximate formulation
|
|---|
| 154 | // On input: Z1 nuclear charge of first nucleus
|
|---|
| 155 | // N1 number of neutrons in first nucleus
|
|---|
| 156 | // beta1 deformation of first nucleus
|
|---|
| 157 | // Z2 nuclear charge of second nucleus
|
|---|
| 158 | // N2 number of neutrons in second nucleus
|
|---|
| 159 | // beta2 deformation of second nucleus
|
|---|
| 160 | // d distance of surfaces of the nuclei
|
|---|
| 161 |
|
|---|
| 162 | // G4double Z1,N1,beta1,Z2,N2,beta2,d,ecoul;
|
|---|
| 163 | G4double ecoul = 0;
|
|---|
| 164 | G4double dtot = 0;
|
|---|
| 165 | const G4double r0 = 1.16;
|
|---|
| 166 |
|
|---|
| 167 | dtot = r0 * ( std::pow((z1+n1),1.0/3.0) * (1.0+0.6666*beta1)
|
|---|
| 168 | + std::pow((z2+n2),1.0/3.0) * (1.0+0.6666*beta2) ) + d;
|
|---|
| 169 | ecoul = z1 * z2 * 1.44 / dtot;
|
|---|
| 170 |
|
|---|
| 171 | return ecoul;
|
|---|
| 172 | }
|
|---|
| 173 |
|
|---|
| 174 | void G4AblaFission::fissionDistri(G4double &a,G4double &z,G4double &e,
|
|---|
| 175 | G4double &a1,G4double &z1,G4double &e1,G4double &v1,
|
|---|
| 176 | G4double &a2,G4double &z2,G4double &e2,G4double &v2)
|
|---|
| 177 | {
|
|---|
| 178 | // G4cout <<"Fission: a = " << a << " z = " << z << " e = " << e << G4endl;
|
|---|
| 179 | // On input: A, Z, E (mass, atomic number and exc. energy of compound nucleus
|
|---|
| 180 | // before fission)
|
|---|
| 181 | // On output: Ai, Zi, Ei (mass, atomic number and exc. energy of fragment 1 and 2
|
|---|
| 182 | // after fission)
|
|---|
| 183 |
|
|---|
| 184 | // Additionally calculated but not put in the parameter list:
|
|---|
| 185 | // Kinetic energy of prefragments EkinR1, EkinR2
|
|---|
| 186 |
|
|---|
| 187 | // Translation of SIMFIS18.PLI (KHS, 2.1.2001)
|
|---|
| 188 |
|
|---|
| 189 | // This program calculates isotopic distributions of fission fragments
|
|---|
| 190 | // with a semiempirical model
|
|---|
| 191 | // Copy from SIMFIS3, KHS, 8. February 1995
|
|---|
| 192 | // Modifications made by Jose Benlliure and KHS in August 1996
|
|---|
| 193 | // Energy counted from lowest barrier (J. Benlliure, KHS 1997)
|
|---|
| 194 | // Some bugs corrected (J. Benlliure, KHS 1997)
|
|---|
| 195 | // Version used for thesis S. Steinhaueser (August 1997)
|
|---|
| 196 | // (Curvature of LD potential increased by factor of 2!)
|
|---|
| 197 |
|
|---|
| 198 | // Weiter veraendert mit der Absicht, eine Version zu erhalten, die
|
|---|
| 199 | // derjenigen entspricht, die von J. Benlliure et al.
|
|---|
| 200 | // in Nucl. Phys. A 628 (1998) 458 verwendet wurde,
|
|---|
| 201 | // allerdings ohne volle Neutronenabdampfung.
|
|---|
| 202 |
|
|---|
| 203 | // The excitation energy was calculate now for each fission channel
|
|---|
| 204 | // separately. The dissipation from saddle to scission was taken from
|
|---|
| 205 | // systematics, the deformation energy at scission considers the shell
|
|---|
| 206 | // effects in a simplified way, and the fluctuation is included.
|
|---|
| 207 | // KHS, April 1999
|
|---|
| 208 |
|
|---|
| 209 | // The width in N/Z was carefully adapted to values given by Lang et al.
|
|---|
| 210 |
|
|---|
| 211 | // The width and eventually a shift in N/Z (polarization) follows the
|
|---|
| 212 | // following rules:
|
|---|
| 213 |
|
|---|
| 214 | // The line N/Z following UCD has an angle of std::atan(Zcn/Ncn)
|
|---|
| 215 | // to the horizontal axis on a chart of nuclides.
|
|---|
| 216 | // (For 238U the angle is 32.2 deg.)
|
|---|
| 217 |
|
|---|
| 218 | // The following relations hold: (from Armbruster)
|
|---|
| 219 | //
|
|---|
| 220 | // sigma(N) (A=const) = sigma(Z) (A=const)
|
|---|
| 221 | // sigma(A) (N=const) = sigma(Z) (N=const)
|
|---|
| 222 | // sigma(A) (Z=const) = sigma(N) (Z=const)
|
|---|
| 223 | //
|
|---|
| 224 | // From this we get:
|
|---|
| 225 | // sigma(Z) (N=const) * N = sigma(N) (Z=const) * Z
|
|---|
| 226 | // sigma(A) (Z=const) = sigma(Z) (A=const) * A/Z
|
|---|
| 227 | // sigma(N) (Z=const) = sigma(Z) (A=const) * A/Z
|
|---|
| 228 | // Z*sigma(N) (Z=const) = N*sigma(Z) (N=const) = A*sigma(Z) (A=const)
|
|---|
| 229 |
|
|---|
| 230 | // Excitation energy now calculated above the lowest potential point
|
|---|
| 231 | // Inclusion of a distribution of excitation energies
|
|---|
| 232 |
|
|---|
| 233 | // Several modifications, starting from SIMFIS12: KHS November 2000
|
|---|
| 234 | // This version seems to work quite well for 238U.
|
|---|
| 235 | // The transition from symmetric to asymmetric fission around 226Th
|
|---|
| 236 | // is reasonably well reproduced, although St. I is too strong and St. II
|
|---|
| 237 | // is too weak. St. I and St. II are also weakly seen for 208Pb.
|
|---|
| 238 |
|
|---|
| 239 | // Extensions for an event generator of fission events (21.11.2000,KHS)
|
|---|
| 240 |
|
|---|
| 241 | // Defalt parameters (IPARS) rather carefully adjusted to
|
|---|
| 242 | // pre-neutron mass distributions of Vives et al. (238U + n)
|
|---|
| 243 | // Die Parameter Fgamma1 und Fgamma2 sind kleiner als die resultierenden
|
|---|
| 244 | // Breiten der Massenverteilungen!!!
|
|---|
| 245 | // Fgamma1 und Fgamma2 wurden angepaᅵ, so daᅵ
|
|---|
| 246 | // Sigma-A(ST-I) = 3.3, Sigma-A(St-II) = 5.8 (nach Vives)
|
|---|
| 247 |
|
|---|
| 248 | // Parameters of the model carefully adjusted by KHS (2.2.2001) to
|
|---|
| 249 | // 238U + 208Pb, 1000 A MeV, Timo Enqvist et al.
|
|---|
| 250 |
|
|---|
| 251 | G4double n = 0.0;
|
|---|
| 252 | G4double nlight1 = 0.0, nlight2 = 0.0;
|
|---|
| 253 | G4double aheavy1 = 0.0,alight1 = 0.0, aheavy2 = 0.0, alight2 = 0.0;
|
|---|
| 254 | // G4double eheavy1 = 0.0, elight1 = 0.0, eheavy2 = 0.0, elight2 = 0.0;
|
|---|
| 255 | G4double zheavy1_shell = 0.0, zheavy2_shell = 0.0;
|
|---|
| 256 | G4double zlight1 = 0.0, zlight2 = 0.0;
|
|---|
| 257 | G4double masscurv = 0.0;
|
|---|
| 258 | G4double sasymm1 = 0.0, sasymm2 = 0.0, ssymm = 0.0, ysum = 0.0, yasymm = 0.0;
|
|---|
| 259 | G4double ssymm_mode1 = 0.0, ssymm_mode2 = 0.0;
|
|---|
| 260 | G4double cz_asymm1_saddle = 0.0, cz_asymm2_saddle = 0.0;
|
|---|
| 261 | // Curvature at saddle, modified by ld-potential
|
|---|
| 262 | G4double wzasymm1_saddle, wzasymm2_saddle, wzsymm_saddle = 0.0;
|
|---|
| 263 | G4double wzasymm1_scission = 0.0, wzasymm2_scission = 0.0, wzsymm_scission = 0.0;
|
|---|
| 264 | G4double wzasymm1 = 0.0, wzasymm2 = 0.0, wzsymm = 0.0;
|
|---|
| 265 | G4double nlight1_eff = 0.0, nlight2_eff = 0.0;
|
|---|
| 266 | G4int imode = 0;
|
|---|
| 267 | G4double rmode = 0.0;
|
|---|
| 268 | G4double z1mean = 0.0, z1width = 0.0;
|
|---|
| 269 | // G4double Z1,Z2,N1R,N2R,A1R,A2R,N1,N2,A1,A2;
|
|---|
| 270 | G4double n1r = 0.0, n2r = 0.0, n1 = 0.0, n2 = 0.0;
|
|---|
| 271 |
|
|---|
| 272 | G4double zsymm = 0.0, nsymm = 0.0, asymm = 0.0;
|
|---|
| 273 | G4double n1mean = 0.0, n1width = 0.0;
|
|---|
| 274 | // effective shell effect at lowest barrier
|
|---|
| 275 | // Excitation energy with respect to ld barrier
|
|---|
| 276 | G4double re1 = 0.0, re2 = 0.0, re3 = 0.0;
|
|---|
| 277 | G4double n1ucd = 0.0, n2ucd = 0.0;
|
|---|
| 278 |
|
|---|
| 279 | // shift of most probable neutron number for given Z,
|
|---|
| 280 | // according to polarization
|
|---|
| 281 | G4int i_help = 0;
|
|---|
| 282 |
|
|---|
| 283 | // /* Parameters of the semiempirical fission model */
|
|---|
| 284 | G4double a_levdens = 0.0;
|
|---|
| 285 | // /* level-density parameter */
|
|---|
| 286 | G4double a_levdens_light1 = 0.0, a_levdens_light2 = 0.0;
|
|---|
| 287 | G4double a_levdens_heavy1 = 0.0, a_levdens_heavy2 = 0.0;
|
|---|
| 288 | const G4double r_null = 1.16;
|
|---|
| 289 | // /* radius parameter */
|
|---|
| 290 | G4double epsilon_1_saddle = 0.0, epsilon0_1_saddle = 0.0;
|
|---|
| 291 | G4double epsilon_2_saddle = 0.0, epsilon0_2_saddle = 0.0, epsilon_symm_saddle = 0.0;
|
|---|
| 292 | G4double epsilon_1_scission = 0.0, epsilon0_1_scission = 0.0;
|
|---|
| 293 | G4double epsilon_2_scission = 0.0, epsilon0_2_scission = 0.0;
|
|---|
| 294 | G4double epsilon_symm_scission = 0.0;
|
|---|
| 295 | // /* modified energy */
|
|---|
| 296 | G4double e_eff1_saddle = 0.0, e_eff2_saddle = 0.0;
|
|---|
| 297 | G4double a1r;
|
|---|
| 298 | G4int icz = 0, k = 0;
|
|---|
| 299 |
|
|---|
| 300 | G4int i_inter = 0;
|
|---|
| 301 | G4double ne_min = 0, ne_m1 = 0, ne_m2 = 0;
|
|---|
| 302 | G4double ed1_low = 0.0, ed2_low = 0.0, ed1_high = 0.0, ed2_high = 0.0, ed1 = 0.0, ed2 = 0.0;
|
|---|
| 303 | G4double atot = 0.0;
|
|---|
| 304 |
|
|---|
| 305 | // Input parameters:
|
|---|
| 306 | //OMMENT(Nuclear charge number);
|
|---|
| 307 | // G4double Z;
|
|---|
| 308 | //OMMENT(Nuclear mass number);
|
|---|
| 309 | // G4double A;
|
|---|
| 310 | //OMMENT(Excitation energy above fission barrier);
|
|---|
| 311 | // G4double E;
|
|---|
| 312 |
|
|---|
| 313 | // Model parameters:
|
|---|
| 314 | //OMMENT(position of heavy peak valley 1);
|
|---|
| 315 | const G4double nheavy1 = 82.0;
|
|---|
| 316 | const G4double nheavy2 = 89.0;
|
|---|
| 317 | //OMMENT(position of heavy peak valley 2);
|
|---|
| 318 | const G4double e_crit = 5; // Critical pairing energy :::PK
|
|---|
| 319 | //OMMENT(Shell effect for valley 1);
|
|---|
| 320 | // Parameter (Delta_U2_shell = -3.2)
|
|---|
| 321 | //OMMENT(I: used shell effect);
|
|---|
| 322 | G4double delta_u1 = 0.0;
|
|---|
| 323 | //omment(I: used shell effect);
|
|---|
| 324 | G4double delta_u2 = 0.0;
|
|---|
| 325 | const G4double delta_u1_shell = -2.5;
|
|---|
| 326 | // Parameter (Delta_U1_shell = -2)
|
|---|
| 327 | //OMMENT(Shell effect for valley 2);
|
|---|
| 328 | const G4double delta_u2_shell = -5.5;
|
|---|
| 329 | const G4double el = 30.0;
|
|---|
| 330 | //OMMENT(Curvature of asymmetric valley 1);
|
|---|
| 331 | const G4double cz_asymm1_shell = 0.7;
|
|---|
| 332 | //OMMENT(Curvature of asymmetric valley 2);
|
|---|
| 333 | const G4double cz_asymm2_shell = 0.08;
|
|---|
| 334 | //OMMENT(Factor for width of distr. valley 1);
|
|---|
| 335 | const G4double fwidth_asymm1 = 1.2;
|
|---|
| 336 | //OMMENT(Factor for width of distr. valley 2);
|
|---|
| 337 | const G4double fwidth_asymm2 = 1.0;
|
|---|
| 338 | // Parameter (CZ_asymm2_scission = 0.12)
|
|---|
| 339 | //OMMENT(Factor to gamma_heavy1);
|
|---|
| 340 | const G4double fgamma1 = 1.0;
|
|---|
| 341 | //OMMENT(I: fading of shells (general));
|
|---|
| 342 | G4double gamma = 0.0;
|
|---|
| 343 | //OMMENT(I: fading of shell 1);
|
|---|
| 344 | G4double gamma_heavy1 = 0.0;
|
|---|
| 345 | //OMMENT(I: fading of shell 2);
|
|---|
| 346 | G4double gamma_heavy2 = 0.0;
|
|---|
| 347 | //OMMENT(Zero-point energy at saddle);
|
|---|
| 348 | const G4double e_zero_point = 0.5;
|
|---|
| 349 | G4int i_eva = 0; // Calculate A = 1 or Aprime = 0 :::PK
|
|---|
| 350 | //OMMENT(I: friction from saddle to scission);
|
|---|
| 351 | G4double e_saddle_scission = 10.0;
|
|---|
| 352 | //OMMENT(Friction factor);
|
|---|
| 353 | const G4double friction_factor = 1.0;
|
|---|
| 354 | //OMMENT(I: Internal counter for different modes); INIT(0,0,0)
|
|---|
| 355 | // Integer*4 I_MODE(3)
|
|---|
| 356 | //OMMENT(I: Yield of symmetric mode);
|
|---|
| 357 | G4double ysymm = 0.0;
|
|---|
| 358 | //OMMENT(I: Yield of asymmetric mode 1);
|
|---|
| 359 | G4double yasymm1 = 0.0;
|
|---|
| 360 | //OMMENT(I: Yield of asymmetric mode 2);
|
|---|
| 361 | G4double yasymm2 = 0.0;
|
|---|
| 362 | //OMMENT(I: Effective position of valley 1);
|
|---|
| 363 | G4double nheavy1_eff = 0.0;
|
|---|
| 364 | //OMMENT(I: position of heavy peak valley 1);
|
|---|
| 365 | G4double zheavy1 = 0.0;
|
|---|
| 366 | //omment(I: Effective position of valley 2);
|
|---|
| 367 | G4double nheavy2_eff = 0.0;
|
|---|
| 368 | //OMMENT(I: position of heavy peak valley 2);
|
|---|
| 369 | G4double zheavy2 = 0.0;
|
|---|
| 370 | //omment(I: Excitation energy above saddle 1);
|
|---|
| 371 | G4double eexc1_saddle = 0.0;
|
|---|
| 372 | //omment(I: Excitation energy above saddle 2);
|
|---|
| 373 | G4double eexc2_saddle = 0.0;
|
|---|
| 374 | //omment(I: Excitation energy above lowest saddle);
|
|---|
| 375 | G4double eexc_max = 0.0;
|
|---|
| 376 | //omment(I: Effective mass mode 1);
|
|---|
| 377 | G4double aheavy1_mean = 0.0;
|
|---|
| 378 | //omment(I: Effective mass mode 2);
|
|---|
| 379 | G4double aheavy2_mean = 0.0;
|
|---|
| 380 | //omment(I: Width of symmetric mode);
|
|---|
| 381 | G4double wasymm_saddle = 0.0;
|
|---|
| 382 | //OMMENT(I: Width of asymmetric mode 1);
|
|---|
| 383 | G4double waheavy1_saddle = 0.0;
|
|---|
| 384 | //OMMENT(I: Width of asymmetric mode 2);
|
|---|
| 385 | G4double waheavy2_saddle = 0.0;
|
|---|
| 386 | //omment(I: Width of symmetric mode);
|
|---|
| 387 | G4double wasymm = 0.0;
|
|---|
| 388 | //OMMENT(I: Width of asymmetric mode 1);
|
|---|
| 389 | G4double waheavy1 = 0.0;
|
|---|
| 390 | //OMMENT(I: Width of asymmetric mode 2);
|
|---|
| 391 | G4double waheavy2 = 0.0;
|
|---|
| 392 | //OMMENT(I: Even-odd effect in Z);
|
|---|
| 393 | G4double r_e_o = 0.0;
|
|---|
| 394 | G4double r_e_o_max = 0.0;
|
|---|
| 395 | G4double e_pair = 0.0;
|
|---|
| 396 | //OMMENT(I: Curveture of symmetric valley);
|
|---|
| 397 | G4double cz_symm = 0.0;
|
|---|
| 398 | //OMMENT(I: Curvature of mass distribution for fixed Z);
|
|---|
| 399 | G4double cn = 0.0;
|
|---|
| 400 | //OMMENT(=1: test output, =0: no test output);
|
|---|
| 401 | const G4int itest = 0;
|
|---|
| 402 | // G4double UMASS, ECOUL, reps1, reps2, rn1_pol;
|
|---|
| 403 | G4double reps1 = 0.0, reps2 = 0.0, rn1_pol = 0.0;
|
|---|
| 404 | // Float_t HAZ,GAUSSHAZ;
|
|---|
| 405 | //G4int kkk = 0;
|
|---|
| 406 | G4int kkk = 10;
|
|---|
| 407 | G4double Bsym = 0.0;
|
|---|
| 408 | G4double Basym_1 = 0.0;
|
|---|
| 409 | G4double Basym_2 = 0.0;
|
|---|
| 410 | G4int iz = 0;
|
|---|
| 411 | // I_MODE = 0;
|
|---|
| 412 |
|
|---|
| 413 | if(itest == 1) {
|
|---|
| 414 | G4cout << " cn mass " << a << G4endl;
|
|---|
| 415 | G4cout << " cn charge " << z << G4endl;
|
|---|
| 416 | G4cout << " cn energy " << e << G4endl;
|
|---|
| 417 | }
|
|---|
| 418 |
|
|---|
| 419 | // /* average Z of asymmetric and symmetric components: */
|
|---|
| 420 | n = a - z; /* neutron number of the fissioning nucleus */
|
|---|
| 421 |
|
|---|
| 422 | k = 0;
|
|---|
| 423 | icz = 0;
|
|---|
| 424 | if ( (std::pow(z,2)/a < 25.0) || (n < nheavy2) || (e > 500.0) ) {
|
|---|
| 425 | icz = -1;
|
|---|
| 426 | // GOTO 1002;
|
|---|
| 427 | goto milledeux;
|
|---|
| 428 | }
|
|---|
| 429 |
|
|---|
| 430 | nlight1 = n - nheavy1;
|
|---|
| 431 | nlight2 = n - nheavy2;
|
|---|
| 432 |
|
|---|
| 433 | // /* Polarisation assumed for standard I and standard II:
|
|---|
| 434 | // Z - Zucd = cpol (for A = const);
|
|---|
| 435 | // from this we get (see Armbruster)
|
|---|
| 436 | // Z - Zucd = Acn/Ncn * cpol (for N = const) */
|
|---|
| 437 |
|
|---|
| 438 | // zheavy1_shell = ((nheavy1/n) * z) - ((a/n) * cpol1); // Simfis18 PK:::
|
|---|
| 439 | zheavy1_shell = ((nheavy1/n) * z) - 0.8; // Simfis3 PK:::
|
|---|
| 440 | //zheavy2_shell = ((nheavy2/n) * z) - ((a/n) * cpol2); // Simfis18 PK:::
|
|---|
| 441 | zheavy2_shell = ((nheavy2/n) * z) - 0.8; // Simfis3 PK:::
|
|---|
| 442 |
|
|---|
| 443 | // p(zheavy1_shell, zheavy2_shell);
|
|---|
| 444 |
|
|---|
| 445 | // e_saddle_scission =
|
|---|
| 446 | // (-24.0 + 0.02227 * (std::pow(z,2))/(std::pow(a,0.33333)) ) * friction_factor;
|
|---|
| 447 | e_saddle_scission = (3.535 * std::pow(z,2)/a - 121.1) * friction_factor; // PK:::
|
|---|
| 448 |
|
|---|
| 449 | // /* Energy dissipated from saddle to scission */
|
|---|
| 450 | // /* F. Rejmund et al., Nucl. Phys. A 678 (2000) 215, fig. 4 b */
|
|---|
| 451 | // E_saddle_scission = DMAX1(0.,E_saddle_scission);
|
|---|
| 452 | // Heavy Ion Induced Reactions, Schroeder W. ed., Harwood, 1986, 101
|
|---|
| 453 | if (e_saddle_scission < 0.0) {
|
|---|
| 454 | e_saddle_scission = 0.0;
|
|---|
| 455 | }
|
|---|
| 456 |
|
|---|
| 457 | // /* Semiempirical fission model: */
|
|---|
| 458 |
|
|---|
| 459 | // /* Fit to experimental result on curvature of potential at saddle */
|
|---|
| 460 | // /* reference: */
|
|---|
| 461 | // /* IF Z**2/A < 33.15E0 THEN
|
|---|
| 462 | // MassCurv = 30.5438538E0 - 4.00212049E0 * Z**2/A
|
|---|
| 463 | // + 0.11983384E0 * Z**4 / (A**2) ;
|
|---|
| 464 | // ELSE
|
|---|
| 465 | // MassCurv = 10.E0 ** (7.16993332E0 - 0.26602401E0 * Z**2/A
|
|---|
| 466 | // + 0.00283802E0 * Z**4 / (A**2)) ; */
|
|---|
| 467 | // /* New parametrization of T. Enqvist according to Mulgin et al. 1998 NPA 640(1998) 375 */
|
|---|
| 468 | if ( (std::pow(z,2))/a < 33.9186) {
|
|---|
| 469 | masscurv = std::pow( 10.0,(-1.093364 + 0.082933 * (std::pow(z,2)/a)
|
|---|
| 470 | - 0.0002602 * (std::pow(z,4)/std::pow(a,2))) );
|
|---|
| 471 | } else {
|
|---|
| 472 | masscurv = std::pow( 10.0,(3.053536 - 0.056477 * (std::pow(z,2)/a)
|
|---|
| 473 | + 0.0002454 * (std::pow(z,4)/std::pow(a,2))) );
|
|---|
| 474 | }
|
|---|
| 475 |
|
|---|
| 476 | cz_symm = (8.0/std::pow(z,2)) * masscurv;
|
|---|
| 477 |
|
|---|
| 478 | if(itest == 1) {
|
|---|
| 479 | G4cout << "cz_symmetry= " << cz_symm << G4endl;
|
|---|
| 480 | }
|
|---|
| 481 |
|
|---|
| 482 | icz = 0;
|
|---|
| 483 | if (cz_symm < 0) {
|
|---|
| 484 | icz = -1;
|
|---|
| 485 | // GOTO 1002;
|
|---|
| 486 | goto milledeux;
|
|---|
| 487 | }
|
|---|
| 488 |
|
|---|
| 489 | // /* proton number in symmetric fission (centre) */
|
|---|
| 490 | zsymm = z/2.0;
|
|---|
| 491 | nsymm = n/2.0;
|
|---|
| 492 | asymm = nsymm + zsymm;
|
|---|
| 493 |
|
|---|
| 494 | zheavy1 = (cz_symm*zsymm + cz_asymm1_shell*zheavy1_shell)/(cz_symm + cz_asymm1_shell);
|
|---|
| 495 | zheavy2 = (cz_symm*zsymm + cz_asymm2_shell*zheavy2_shell)/(cz_symm + cz_asymm2_shell);
|
|---|
| 496 |
|
|---|
| 497 | // /* position of valley due to influence of liquid-drop potential */
|
|---|
| 498 | nheavy1_eff = (zheavy1 + 0.8)*(n/z);
|
|---|
| 499 | nheavy2_eff = (zheavy2 + 0.8)*(n/z);
|
|---|
| 500 | nlight1_eff = n - nheavy1_eff;
|
|---|
| 501 | nlight2_eff = n - nheavy2_eff;
|
|---|
| 502 | // /* proton number of light fragments (centre) */
|
|---|
| 503 | zlight1 = z - zheavy1;
|
|---|
| 504 | // /* proton number of light fragments (centre) */
|
|---|
| 505 | zlight2 = z - zheavy2;
|
|---|
| 506 | aheavy1 = nheavy1_eff + zheavy1;
|
|---|
| 507 | aheavy2 = nheavy2_eff + zheavy2;
|
|---|
| 508 | aheavy1_mean = aheavy1;
|
|---|
| 509 | aheavy2_mean = aheavy2;
|
|---|
| 510 | alight1 = nlight1_eff + zlight1;
|
|---|
| 511 | alight2 = nlight2_eff + zlight2;
|
|---|
| 512 | // Eheavy1 = E * Aheavy1 / A
|
|---|
| 513 | // Eheavy2 = E * Aheavy2 / A
|
|---|
| 514 | // Elight1 = E * Alight1 / A
|
|---|
| 515 | // Elight2 = E * Alight2 / A
|
|---|
| 516 | a_levdens = a / 8.0;
|
|---|
| 517 | a_levdens_heavy1 = aheavy1 / 8.0;
|
|---|
| 518 | a_levdens_heavy2 = aheavy2 / 8.0;
|
|---|
| 519 | a_levdens_light1 = alight1 / 8.0;
|
|---|
| 520 | a_levdens_light2 = alight2 / 8.0;
|
|---|
| 521 | gamma = a_levdens / (0.4 * (std::pow(a,1.3333)) );
|
|---|
| 522 | gamma_heavy1 = ( a_levdens_heavy1 / (0.4 * (std::pow(aheavy1,1.3333)) ) ) * fgamma1;
|
|---|
| 523 | gamma_heavy2 = a_levdens_heavy2 / (0.4 * (std::pow(aheavy2,1.3333)) );
|
|---|
| 524 |
|
|---|
| 525 | cz_asymm1_saddle = cz_asymm1_shell + cz_symm;
|
|---|
| 526 | cz_asymm2_saddle = cz_asymm2_shell + cz_symm;
|
|---|
| 527 |
|
|---|
| 528 | // Up to here: Ok! Checked CS 10/10/05
|
|---|
| 529 |
|
|---|
| 530 | cn = umass(zsymm,(nsymm+1.),0.0) + umass(zsymm,(nsymm-1.),0.0)
|
|---|
| 531 | + 1.44 * (std::pow(zsymm,2))/
|
|---|
| 532 | ( (std::pow(r_null,2)) *
|
|---|
| 533 | ( std::pow((asymm+1.0),1.0/3.0) + std::pow((asymm-1.0),1.0/3.0) ) *
|
|---|
| 534 | ( std::pow((asymm+1.0),1.0/3.0) + std::pow((asymm-1.0),1.0/3.0) ) )
|
|---|
| 535 | - 2.0 * umass(zsymm,nsymm,0.0)
|
|---|
| 536 | - 1.44 * (std::pow(zsymm,2))/
|
|---|
| 537 | ( ( 2.0 * r_null * (std::pow(asymm,1.0/3.0)) ) *
|
|---|
| 538 | ( 2.0 * r_null * (std::pow(asymm,1.0/3.0)) ) );
|
|---|
| 539 |
|
|---|
| 540 | // /* shell effect in valley of mode 1 */
|
|---|
| 541 | delta_u1 = delta_u1_shell + (std::pow((zheavy1_shell-zheavy1),2))*cz_asymm1_shell;
|
|---|
| 542 | // /* shell effect in valley of mode 2 */
|
|---|
| 543 | delta_u2 = delta_u2_shell + (std::pow((zheavy2_shell-zheavy2),2))*cz_asymm2_shell;
|
|---|
| 544 |
|
|---|
| 545 | Bsym = 0.0;
|
|---|
| 546 | Basym_1 = Bsym + std::pow((zheavy1-zsymm), 2) * cz_symm + delta_u1;
|
|---|
| 547 | Basym_2 = Bsym + std::pow((zheavy2-zsymm), 2) * cz_symm + delta_u2;
|
|---|
| 548 | if(Bsym < Basym_1 && Bsym < Basym_2) {
|
|---|
| 549 | // Excitation energies at the saddle point
|
|---|
| 550 | // without and with shell effect
|
|---|
| 551 | epsilon0_1_saddle = (e + e_zero_point - std::pow((zheavy1 - zsymm), 2) * cz_symm);
|
|---|
| 552 | epsilon0_2_saddle = (e + e_zero_point - std::pow((zheavy2 - zsymm), 2) * cz_symm);
|
|---|
| 553 |
|
|---|
| 554 | epsilon_1_saddle = epsilon0_1_saddle - delta_u1;
|
|---|
| 555 | epsilon_2_saddle = epsilon0_2_saddle - delta_u2;
|
|---|
| 556 |
|
|---|
| 557 | epsilon_symm_saddle = e + e_zero_point;
|
|---|
| 558 | eexc1_saddle = epsilon_1_saddle;
|
|---|
| 559 | eexc2_saddle = epsilon_2_saddle;
|
|---|
| 560 |
|
|---|
| 561 | // Excitation energies at the scission point
|
|---|
| 562 | // heavy fragment without and with shell effect
|
|---|
| 563 | epsilon0_1_scission = (e + e_saddle_scission - std::pow((zheavy1 - zsymm), 2) * cz_symm) * aheavy1/a;
|
|---|
| 564 | epsilon_1_scission = epsilon0_1_scission - delta_u1*(aheavy1/a);
|
|---|
| 565 |
|
|---|
| 566 | epsilon0_2_scission = (e + e_saddle_scission - std::pow((zheavy2 - zsymm), 2) * cz_symm) * aheavy2/a;
|
|---|
| 567 | epsilon_2_scission = epsilon0_2_scission - delta_u2*(aheavy2/a);
|
|---|
| 568 |
|
|---|
| 569 | epsilon_symm_scission = e + e_saddle_scission;
|
|---|
| 570 | } else if (Basym_1 < Bsym && Basym_1 < Basym_2) {
|
|---|
| 571 | // Excitation energies at the saddle point
|
|---|
| 572 | // without and with shell effect
|
|---|
| 573 | epsilon_symm_saddle = (e + e_zero_point + delta_u1 + std::pow((zheavy1-zsymm), 2) * cz_symm);
|
|---|
| 574 | epsilon0_2_saddle = (epsilon_symm_saddle - std::pow((zheavy2-zsymm), 2) * cz_symm);
|
|---|
| 575 | epsilon_2_saddle = epsilon0_2_saddle - delta_u2;
|
|---|
| 576 | epsilon0_1_saddle = e + e_zero_point + delta_u1;
|
|---|
| 577 | epsilon_1_saddle = e + e_zero_point;
|
|---|
| 578 | eexc1_saddle = epsilon_1_saddle;
|
|---|
| 579 | eexc2_saddle = epsilon_2_saddle;
|
|---|
| 580 |
|
|---|
| 581 | // Excitation energies at the scission point
|
|---|
| 582 | // heavy fragment without and with shell effect
|
|---|
| 583 | epsilon_symm_scission = (e + e_saddle_scission + std::pow((zheavy1-zsymm), 2) * cz_symm + delta_u1);
|
|---|
| 584 | epsilon0_2_scission = (epsilon_symm_scission - std::pow((zheavy2-zsymm), 2) * cz_symm) * aheavy2/a;
|
|---|
| 585 | epsilon_2_scission = epsilon0_2_scission - delta_u2*aheavy2/a;
|
|---|
| 586 | epsilon0_1_scission = (e + e_saddle_scission + delta_u1) * aheavy1/a;
|
|---|
| 587 | epsilon_1_scission = (e + e_saddle_scission) * aheavy1/a;
|
|---|
| 588 | } else if (Basym_2 < Bsym && Basym_2 < Basym_1) {
|
|---|
| 589 | // Excitation energies at the saddle point
|
|---|
| 590 | // without and with shell effect
|
|---|
| 591 | epsilon_symm_saddle = (e + e_zero_point + delta_u2 + std::pow((zheavy2-zsymm), 2) * cz_symm);
|
|---|
| 592 | epsilon0_1_saddle = (epsilon_symm_saddle - std::pow((zheavy1-zsymm), 2) * cz_symm);
|
|---|
| 593 | epsilon_1_saddle = epsilon0_1_saddle - delta_u1;
|
|---|
| 594 | epsilon0_2_saddle = e + e_zero_point + delta_u2;
|
|---|
| 595 | epsilon_2_saddle = e + e_zero_point;
|
|---|
| 596 | eexc1_saddle = epsilon_1_saddle;
|
|---|
| 597 | eexc2_saddle = epsilon_2_saddle;
|
|---|
| 598 |
|
|---|
| 599 | // Excitation energies at the scission point
|
|---|
| 600 | // heavy fragment without and with shell effect
|
|---|
| 601 | epsilon_symm_scission = (e + e_saddle_scission + std::pow((zheavy2-zsymm), 2) * cz_symm + delta_u2);
|
|---|
| 602 | epsilon0_1_scission = (epsilon_symm_scission - std::pow((zheavy1-zsymm), 2) * cz_symm) * aheavy1/a;
|
|---|
| 603 | epsilon_1_scission = epsilon0_1_scission - delta_u1*aheavy1/a;
|
|---|
| 604 | epsilon0_2_scission = (e + e_saddle_scission + delta_u2) * aheavy2/a;
|
|---|
| 605 | epsilon_2_scission = (e + e_saddle_scission) * aheavy2/a;
|
|---|
| 606 |
|
|---|
| 607 | } else {
|
|---|
| 608 | G4cout <<"G4AblaFission: " << G4endl;
|
|---|
| 609 | }
|
|---|
| 610 | if(epsilon_1_saddle < 0.0) epsilon_1_saddle = 0.0;
|
|---|
| 611 | if(epsilon_2_saddle < 0.0) epsilon_2_saddle = 0.0;
|
|---|
| 612 | if(epsilon0_1_saddle < 0.0) epsilon0_1_saddle = 0.0;
|
|---|
| 613 | if(epsilon0_2_saddle < 0.0) epsilon0_2_saddle = 0.0;
|
|---|
| 614 | if(epsilon_symm_saddle < 0.0) epsilon_symm_saddle = 0.0;
|
|---|
| 615 |
|
|---|
| 616 | if(epsilon_1_scission < 0.0) epsilon_1_scission = 0.0;
|
|---|
| 617 | if(epsilon_2_scission < 0.0) epsilon_2_scission = 0.0;
|
|---|
| 618 | if(epsilon0_1_scission < 0.0) epsilon0_1_scission = 0.0;
|
|---|
| 619 | if(epsilon0_2_scission < 0.0) epsilon0_2_scission = 0.0;
|
|---|
| 620 | if(epsilon_symm_scission < 0.0) epsilon_symm_scission = 0.0;
|
|---|
| 621 |
|
|---|
| 622 | if(itest == 1) {
|
|---|
| 623 | G4cout <<"E, E1, E2, Es" << e << epsilon_1_saddle << epsilon_2_saddle << epsilon_symm_saddle << G4endl;
|
|---|
| 624 | }
|
|---|
| 625 |
|
|---|
| 626 | e_eff1_saddle = epsilon0_1_saddle - delta_u1 * (std::exp((-epsilon_1_saddle*gamma)));
|
|---|
| 627 |
|
|---|
| 628 | if (e_eff1_saddle > 0.0) {
|
|---|
| 629 | wzasymm1_saddle = std::sqrt( (0.5) *
|
|---|
| 630 | (std::sqrt(1.0/a_levdens*e_eff1_saddle)) /
|
|---|
| 631 | (cz_asymm1_shell * std::exp((-epsilon_1_saddle*gamma)) + cz_symm) );
|
|---|
| 632 | } else {
|
|---|
| 633 | wzasymm1_saddle = 1.0;
|
|---|
| 634 | }
|
|---|
| 635 |
|
|---|
| 636 | e_eff2_saddle = epsilon0_2_saddle - delta_u2 * std::exp((-epsilon_2_saddle*gamma));
|
|---|
| 637 | if (e_eff2_saddle > 0.0) {
|
|---|
| 638 | wzasymm2_saddle = std::sqrt( (0.5 *
|
|---|
| 639 | (std::sqrt(1.0/a_levdens*e_eff2_saddle)) /
|
|---|
| 640 | (cz_asymm2_shell * std::exp((-epsilon_2_saddle*gamma)) + cz_symm) ) );
|
|---|
| 641 | } else {
|
|---|
| 642 | wzasymm2_saddle = 1.0;
|
|---|
| 643 | }
|
|---|
| 644 |
|
|---|
| 645 | if(e - e_zero_point > 0.0) {
|
|---|
| 646 | wzsymm_saddle = std::sqrt( (0.5 *
|
|---|
| 647 | (std::sqrt(1.0/a_levdens*(e+epsilon_symm_saddle))) / cz_symm ) );
|
|---|
| 648 | } else {
|
|---|
| 649 | wzsymm_saddle = 1.0;
|
|---|
| 650 | }
|
|---|
| 651 |
|
|---|
| 652 | // if (itest == 1) {
|
|---|
| 653 | // G4cout << "wz1(saddle) = " << wzasymm1_saddle << G4endl;
|
|---|
| 654 | // G4cout << "wz2(saddle) = " << wzasymm2_saddle << G4endl;
|
|---|
| 655 | // G4cout << "wzsymm(saddle) = " << wzsymm_saddle << G4endl;
|
|---|
| 656 | // }
|
|---|
| 657 |
|
|---|
| 658 | // /* Calculate widhts at the scission point: */
|
|---|
| 659 | // /* fits of ref. Beizin 1991 (Plots brought to GSI by Sergei Zhdanov) */
|
|---|
| 660 |
|
|---|
| 661 | wzsymm_scission = wzsymm_saddle;
|
|---|
| 662 |
|
|---|
| 663 | if (e_saddle_scission == 0.0) {
|
|---|
| 664 | wzasymm1_scission = wzasymm1_saddle;
|
|---|
| 665 | wzasymm2_scission = wzasymm2_saddle;
|
|---|
| 666 | } else {
|
|---|
| 667 | if (nheavy1_eff > 75.0) {
|
|---|
| 668 | wzasymm1_scission = (std::sqrt(21.0)) * z/a;
|
|---|
| 669 | double RR = (70.0-28.0)/3.0*(z*z/a-35.0)+28.0;
|
|---|
| 670 | if(RR > 0.0) {
|
|---|
| 671 | wzasymm2_scission = std::sqrt(RR)*(z/a);
|
|---|
| 672 | } else {
|
|---|
| 673 | wzasymm2_scission = 0.0;
|
|---|
| 674 | }
|
|---|
| 675 | wzasymm2_scission = (std::sqrt (max( (70.0-28.0)/3.0*(z*z/a-35.0)+28.,0.0 )) ) * z/a;
|
|---|
| 676 | } else {
|
|---|
| 677 | wzasymm1_scission = wzasymm1_saddle;
|
|---|
| 678 | wzasymm2_scission = wzasymm2_saddle;
|
|---|
| 679 | }
|
|---|
| 680 | }
|
|---|
| 681 |
|
|---|
| 682 | wzasymm1_scission = max(wzasymm1_scission,wzasymm1_saddle);
|
|---|
| 683 | wzasymm2_scission = max(wzasymm2_scission,wzasymm2_saddle);
|
|---|
| 684 |
|
|---|
| 685 | wzasymm1 = wzasymm1_scission * fwidth_asymm1;
|
|---|
| 686 | wzasymm2 = wzasymm2_scission * fwidth_asymm2;
|
|---|
| 687 | wzsymm = wzsymm_scission;
|
|---|
| 688 |
|
|---|
| 689 | // /* if (ITEST == 1) {
|
|---|
| 690 | // G4cout << "WZ1(scission) = " << WZasymm1_scission << G4endl;
|
|---|
| 691 | // G4cout << "WZ2(scission) = " << WZasymm2_scission << G4endl;
|
|---|
| 692 | // G4cout << "WZsymm(scission) = " << WZsymm_scission << G4endl;
|
|---|
| 693 | // }
|
|---|
| 694 | // if (ITEST == 1) {
|
|---|
| 695 | // G4cout << "WZ1(scission) final= " << WZasymm1 << G4endl;
|
|---|
| 696 | // G4cout << "WZ2(scission) final= " << WZasymm2 << G4endl;
|
|---|
| 697 | // G4cout << "WZsymm(scission) final= " << WZsymm << G4endl;
|
|---|
| 698 | // } */
|
|---|
| 699 |
|
|---|
| 700 | wasymm = wzsymm * a/z;
|
|---|
| 701 | waheavy1 = wzasymm1 * a/z;
|
|---|
| 702 | waheavy2 = wzasymm2 * a/z;
|
|---|
| 703 |
|
|---|
| 704 | // G4cout <<"al, e, es, cn " << a_levdens << e << e_saddle_scission << cn << G4endl;
|
|---|
| 705 |
|
|---|
| 706 | wasymm_saddle = wzsymm_saddle * a/z;
|
|---|
| 707 | waheavy1_saddle = wzasymm1_saddle * a/z;
|
|---|
| 708 | waheavy2_saddle = wzasymm2_saddle * a/z;
|
|---|
| 709 |
|
|---|
| 710 | // if (itest == 1) {
|
|---|
| 711 | // G4cout << "wasymm = " << wzsymm << G4endl;
|
|---|
| 712 | // G4cout << "waheavy1 = " << waheavy1 << G4endl;
|
|---|
| 713 | // G4cout << "waheavy2 = " << waheavy2 << G4endl;
|
|---|
| 714 | // }
|
|---|
| 715 |
|
|---|
| 716 | // sig_0 = quantum fluctuation = 0.45 z units for A=cte
|
|---|
| 717 | // 0.45*2.58 = 1.16 n units for Z=cte
|
|---|
| 718 | // sig_0^2 = 1.16*2 = 1.35 n units for Z=cte
|
|---|
| 719 | n1width = std::sqrt(0.5 * std::sqrt(1.0/a_levdens*(e + e_saddle_scission)) / cn + 1.35);
|
|---|
| 720 | if ( (epsilon0_1_saddle - delta_u1*std::exp((-epsilon_1_saddle*gamma_heavy1))) < 0.0) {
|
|---|
| 721 | sasymm1 = -10.0;
|
|---|
| 722 | } else {
|
|---|
| 723 | sasymm1 = 2.0 * std::sqrt( a_levdens * (epsilon0_1_saddle -
|
|---|
| 724 | delta_u1*(std::exp((-epsilon_1_saddle*gamma_heavy1))) ) );
|
|---|
| 725 | }
|
|---|
| 726 |
|
|---|
| 727 | if ( (epsilon0_2_saddle - delta_u2*std::exp((-epsilon_2_saddle*gamma_heavy2))) < 0.0) {
|
|---|
| 728 | sasymm2 = -10.0;
|
|---|
| 729 | } else {
|
|---|
| 730 | sasymm2 = 2.0 * std::sqrt( a_levdens * (epsilon0_2_saddle -
|
|---|
| 731 | delta_u2*(std::exp((-epsilon_2_saddle*gamma_heavy2))) ) );
|
|---|
| 732 | }
|
|---|
| 733 |
|
|---|
| 734 | if (epsilon_symm_saddle > 0.0) {
|
|---|
| 735 | ssymm = 2.0 * std::sqrt( a_levdens*(epsilon_symm_saddle) );
|
|---|
| 736 | } else {
|
|---|
| 737 | ssymm = -10.0;
|
|---|
| 738 | }
|
|---|
| 739 |
|
|---|
| 740 | if (ssymm > -10.0) {
|
|---|
| 741 | ysymm = 1.0;
|
|---|
| 742 | if (epsilon0_1_saddle < 0.0) { // /* low energy */
|
|---|
| 743 | yasymm1 = std::exp((sasymm1-ssymm)) * wzasymm1_saddle / wzsymm_saddle * 2.0;
|
|---|
| 744 | // /* factor of 2 for symmetry classes */
|
|---|
| 745 | } else { // /* high energy */
|
|---|
| 746 | ssymm_mode1 = 2.0 * std::sqrt( a_levdens*(epsilon0_1_saddle) );
|
|---|
| 747 | yasymm1 = ( std::exp((sasymm1-ssymm)) - std::exp((ssymm_mode1 - ssymm)) )
|
|---|
| 748 | * wzasymm1_saddle / wzsymm_saddle * 2.0;
|
|---|
| 749 | }
|
|---|
| 750 |
|
|---|
| 751 | if (epsilon0_2_saddle < 0.0) { // /* low energy */
|
|---|
| 752 | yasymm2 = std::exp((sasymm2-ssymm)) * wzasymm2_saddle / wzsymm_saddle * 2.0;
|
|---|
| 753 | // /* factor of 2 for symmetry classes */
|
|---|
| 754 | } else { // /* high energy */
|
|---|
| 755 | ssymm_mode2 = 2.0 * std::sqrt( a_levdens*(epsilon0_2_saddle) );
|
|---|
| 756 | yasymm2 = ( std::exp((sasymm2-ssymm)) - std::exp((ssymm_mode2 - ssymm)) )
|
|---|
| 757 | * wzasymm2_saddle / wzsymm_saddle * 2.0;
|
|---|
| 758 | }
|
|---|
| 759 | // /* difference in the exponent in order */
|
|---|
| 760 | // /* to avoid numerical overflow */
|
|---|
| 761 | }
|
|---|
| 762 | else {
|
|---|
| 763 | if ( (sasymm1 > -10.0) && (sasymm2 > -10.0) ) {
|
|---|
| 764 | ysymm = 0.0;
|
|---|
| 765 | yasymm1 = std::exp(sasymm1) * wzasymm1_saddle * 2.0;
|
|---|
| 766 | yasymm2 = std::exp(sasymm2) * wzasymm2_saddle * 2.0;
|
|---|
| 767 | }
|
|---|
| 768 | }
|
|---|
| 769 |
|
|---|
| 770 | // /* normalize */
|
|---|
| 771 | ysum = ysymm + yasymm1 + yasymm2;
|
|---|
| 772 | if (ysum > 0.0) {
|
|---|
| 773 | ysymm = ysymm / ysum;
|
|---|
| 774 | yasymm1 = yasymm1 / ysum;
|
|---|
| 775 | yasymm2 = yasymm2 / ysum;
|
|---|
| 776 | yasymm = yasymm1 + yasymm2;
|
|---|
| 777 | } else {
|
|---|
| 778 | ysymm = 0.0;
|
|---|
| 779 | yasymm1 = 0.0;
|
|---|
| 780 | yasymm2 = 0.0;
|
|---|
| 781 | // /* search minimum threshold and attribute all events to this mode */
|
|---|
| 782 | if ( (epsilon_symm_saddle < epsilon_1_saddle) && (epsilon_symm_saddle < epsilon_2_saddle) ) {
|
|---|
| 783 | ysymm = 1.0;
|
|---|
| 784 | } else {
|
|---|
| 785 | if (epsilon_1_saddle < epsilon_2_saddle) {
|
|---|
| 786 | yasymm1 = 1.0;
|
|---|
| 787 | } else {
|
|---|
| 788 | yasymm2 = 1.0;
|
|---|
| 789 | }
|
|---|
| 790 | }
|
|---|
| 791 | }
|
|---|
| 792 |
|
|---|
| 793 | // if (itest == 1) {
|
|---|
| 794 | // G4cout << "ysymm normalized= " << ysymm << G4endl;
|
|---|
| 795 | // G4cout << "yasymm1 normalized= " << yasymm1 << G4endl;
|
|---|
| 796 | // G4cout << "yasymm2 normalized= " << yasymm2 << G4endl;
|
|---|
| 797 | // }
|
|---|
| 798 |
|
|---|
| 799 | // /* even-odd effect */
|
|---|
| 800 | // /* simple parametrization KHS, Nov. 2000. From Rejmund et al. */
|
|---|
| 801 | eexc_max = max(eexc1_saddle, eexc2_saddle);
|
|---|
| 802 | eexc_max = max(eexc_max, e);
|
|---|
| 803 | iz = (G4int)z;
|
|---|
| 804 | // G4cout << "mod(z, 2)" << iz%2 << G4endl;
|
|---|
| 805 | if ((G4int)(z) % 2 == 0) {
|
|---|
| 806 | r_e_o_max = 0.3 * (1.0 - 0.2 * (std::pow(z, 2)/a - std::pow(92.0, 2)/238.0));
|
|---|
| 807 | e_pair = 2.0 * 12.0 / std::sqrt(a);
|
|---|
| 808 | if(eexc_max > (e_crit + e_pair)) {
|
|---|
| 809 | r_e_o = 0.0;
|
|---|
| 810 | } else {
|
|---|
| 811 | if(eexc_max < e_pair) {
|
|---|
| 812 | r_e_o = r_e_o_max;
|
|---|
| 813 | } else {
|
|---|
| 814 | r_e_o = std::pow((eexc_max - e_crit - e_pair)/e_crit, 2) * r_e_o_max;
|
|---|
| 815 | }
|
|---|
| 816 | }
|
|---|
| 817 | } else {
|
|---|
| 818 | r_e_o = 0.0;
|
|---|
| 819 | }
|
|---|
| 820 |
|
|---|
| 821 | // G4cout <<"rmax " << r_e_o_max << G4endl;
|
|---|
| 822 | // if(r_e_o > 0.0) G4cout <<"e_crit, r_e_o" << e_crit << r_e_o << G4endl;
|
|---|
| 823 | // $LOOP; /* event loop */
|
|---|
| 824 | // I_COUNT = I_COUNT + 1;
|
|---|
| 825 |
|
|---|
| 826 | /* random decision: symmetric or asymmetric */
|
|---|
| 827 | /* IMODE = 3 means asymmetric fission, mode 1,
|
|---|
| 828 | IMODE = 2 means asymmetric fission, mode 2,
|
|---|
| 829 | IMODE = 1 means symmetric */
|
|---|
| 830 | // RMODE = dble(HAZ(k));
|
|---|
| 831 | // rmode = rnd.rndm();
|
|---|
| 832 | // // Safety check added to make sure we always select well defined
|
|---|
| 833 | // // fission mode.
|
|---|
| 834 | rmode = haz(k);
|
|---|
| 835 | // Cast for test CS 11/10/05
|
|---|
| 836 | // RMODE = 0.54;
|
|---|
| 837 | // rmode = 0.54;
|
|---|
| 838 | if (rmode < ysymm) {
|
|---|
| 839 | imode = 1;
|
|---|
| 840 | } else if (rmode < (ysymm + yasymm1)) {
|
|---|
| 841 | imode = 2;
|
|---|
| 842 | } else {
|
|---|
| 843 | imode = 3;
|
|---|
| 844 | }
|
|---|
| 845 | // /* determine parameters of the Z distribution */
|
|---|
| 846 | // force imode (for testing, PK)
|
|---|
| 847 | // imode = 3;
|
|---|
| 848 |
|
|---|
| 849 | if (imode == 1) {
|
|---|
| 850 | z1mean = zsymm;
|
|---|
| 851 | z1width = wzsymm;
|
|---|
| 852 | } else if (imode == 2) {
|
|---|
| 853 | z1mean = zheavy1;
|
|---|
| 854 | z1width = wzasymm1;
|
|---|
| 855 | } else if (imode == 3) {
|
|---|
| 856 | z1mean = zheavy2;
|
|---|
| 857 | z1width = wzasymm2;
|
|---|
| 858 | }
|
|---|
| 859 |
|
|---|
| 860 | if (itest == 1) {
|
|---|
| 861 | G4cout << "nbre aleatoire tire " << rmode << G4endl;
|
|---|
| 862 | G4cout << "fission mode " << imode << G4endl;
|
|---|
| 863 | G4cout << "z1mean= " << z1mean << G4endl;
|
|---|
| 864 | G4cout << "z1width= " << z1width << G4endl;
|
|---|
| 865 | }
|
|---|
| 866 |
|
|---|
| 867 | // /* random decision: Z1 and Z2 at scission: */
|
|---|
| 868 | z1 = 1.0;
|
|---|
| 869 | z2 = 1.0;
|
|---|
| 870 |
|
|---|
| 871 | while ( (z1<5.0) || (z2<5.0) ) {
|
|---|
| 872 | // Z1 = dble(GAUSSHAZ(K,sngl(Z1mean),sngl(Z1width)));
|
|---|
| 873 | // z1 = rnd.gaus(z1mean,z1width);
|
|---|
| 874 | // z1 = 48.26; // gausshaz(k, z1mean, z1width);
|
|---|
| 875 | z1 = gausshaz(k, z1mean, z1width);
|
|---|
| 876 | even_odd(z1, r_e_o, i_help);
|
|---|
| 877 | z1 = double(i_help);
|
|---|
| 878 | z2 = z - z1;
|
|---|
| 879 | }
|
|---|
| 880 |
|
|---|
| 881 | if (itest == 1) {
|
|---|
| 882 | G4cout << "ff charge sample " << G4endl;
|
|---|
| 883 | G4cout << "z1 = " << z1 << G4endl;
|
|---|
| 884 | G4cout << "z2 = " << z2 << G4endl;
|
|---|
| 885 | }
|
|---|
| 886 |
|
|---|
| 887 | // // CALL EVEN_ODD(Z1,R_E_O,I_HELP);
|
|---|
| 888 | // // /* Integer proton number with even-odd effect */
|
|---|
| 889 | // // Z1 = REAL(I_HELP)
|
|---|
| 890 | // // /* Z1 = INT(Z1+0.5E0); */
|
|---|
| 891 | // z2 = z - z1;
|
|---|
| 892 |
|
|---|
| 893 | // /* average N of both fragments: */
|
|---|
| 894 | if (imode == 1) {
|
|---|
| 895 | n1ucd = z1 * n/z;
|
|---|
| 896 | n2ucd = z2 * n/z;
|
|---|
| 897 | re1 = umass(z1,n1ucd,0.6) + umass(z2,n2ucd,0.6) + ecoul(z1,n1ucd,0.6,z2,n2ucd,0.6,2.0); // umass == massdef
|
|---|
| 898 | re2 = umass(z1,n1ucd+1.,0.6) + umass(z2,n2ucd-1.,0.6) + ecoul(z1,n1ucd+1.,0.6,z2,n2ucd-1.,0.6,2.0);
|
|---|
| 899 | re3 = umass(z1,n1ucd+2.,0.6) + umass(z2,n2ucd-2.,0.6) + ecoul(z1,n1ucd+2.,0.6,z2,n2ucd-2.,0.6,2.0);
|
|---|
| 900 | reps2 = (re1-2.0*re2+re3) / 2.0;
|
|---|
| 901 | reps1 = re2 - re1 - reps2;
|
|---|
| 902 | rn1_pol = - reps1 / (2.0 * reps2);
|
|---|
| 903 | n1mean = n1ucd + rn1_pol;
|
|---|
| 904 | } else {
|
|---|
| 905 | n1mean = (z1 + 0.5) * n/z;
|
|---|
| 906 | }
|
|---|
| 907 |
|
|---|
| 908 | // n1mean nsymm + (z1 - zsymm) * 1.6 from 238 U(nth, f)
|
|---|
| 909 | // n1width = 0.9 + E * 0.002 KHS
|
|---|
| 910 |
|
|---|
| 911 | // random decision: N1R and N2R at scission, before evaporation
|
|---|
| 912 | n1r = 1.0;
|
|---|
| 913 | n2r = 1.0;
|
|---|
| 914 | while (n1r < 5 || n2r < 5) {
|
|---|
| 915 | // n1r = 76.93; gausshaz(kkk,n1mean,n1width);
|
|---|
| 916 | n1r = gausshaz(kkk,n1mean,n1width);
|
|---|
| 917 | // modification to have n1r as integer, and n=n1r+n2r rigorously a.b. 19/4/2001
|
|---|
| 918 | i_inter = int(n1r + 0.5);
|
|---|
| 919 | n1r = double(i_inter);
|
|---|
| 920 | n2r = n - n1r;
|
|---|
| 921 | }
|
|---|
| 922 |
|
|---|
| 923 | // neutron evaporation from fragments
|
|---|
| 924 | if (i_eva > 0) {
|
|---|
| 925 | // treatment sz
|
|---|
| 926 | ne_min = 0.095e0 * a - 20.4e0;
|
|---|
| 927 | if (ne_min < 0) ne_min = 0.0;
|
|---|
| 928 | ne_min = ne_min + e / 8.e0; // 1 neutron per 8 mev */
|
|---|
| 929 | a1r = z1 + n1r; // mass of first fragment */
|
|---|
| 930 | ne_m1 = a1r / a * ne_min; // devide nbr. of neutrons acc. mass
|
|---|
| 931 | ne_m2 = ne_min - ne_m1; // nmbr. of neutrons of 2. fragment
|
|---|
| 932 | n1 = n1r - ne_m1; // final neutron number 1. fragment
|
|---|
| 933 | n2 = n2r - ne_m2; // ! final neutron number 2. fragment
|
|---|
| 934 | } else {
|
|---|
| 935 | n1 = n1r;
|
|---|
| 936 | n2 = n2r;
|
|---|
| 937 | }
|
|---|
| 938 |
|
|---|
| 939 | // excitation energy due to deformation
|
|---|
| 940 |
|
|---|
| 941 | a1 = z1 + n1r; // mass of first fragment */
|
|---|
| 942 | a2 = z2 + n2r; // mass of second fragment */
|
|---|
| 943 | if (a1 < 80) {
|
|---|
| 944 | ed1_low = 0.0;
|
|---|
| 945 | } else if (a1 >= 80 && a1 < 110) {
|
|---|
| 946 | ed1_low = (a1-80.)*20./30.;
|
|---|
| 947 | } else if (a1 >= 110 && a1 < 130) {
|
|---|
| 948 | ed1_low = -(a1-110.)*20./20. + 20.;
|
|---|
| 949 | } else if (a1 >= 130) {
|
|---|
| 950 | ed1_low = (a1-130.)*20./30.;
|
|---|
| 951 | }
|
|---|
| 952 |
|
|---|
| 953 | if (a2 < 80) {
|
|---|
| 954 | ed2_low = 0.0;
|
|---|
| 955 | } else if (a2 >= 80 && a2 < 110) {
|
|---|
| 956 | ed2_low = (a2-80.)*20./30.;
|
|---|
| 957 | } else if (a2 >= 110 && a2 < 130) {
|
|---|
| 958 | ed2_low = -(a2-110.)*20./20. + 20.;
|
|---|
| 959 | } else if (a2 >= 130) {
|
|---|
| 960 | ed2_low = (a2-130.)*20./30.;
|
|---|
| 961 | }
|
|---|
| 962 |
|
|---|
| 963 | ed1_high = 20.0*a1/(a1+a2);
|
|---|
| 964 | ed2_high = 20.0 - ed1_high;
|
|---|
| 965 | ed1 = ed1_low*std::exp(-e/el) + ed1_high*(1-std::exp(-e/el));
|
|---|
| 966 | ed2 = ed2_low*std::exp(-e/el) + ed2_high*(1-std::exp(-e/el));
|
|---|
| 967 |
|
|---|
| 968 | // write(6,101)e,a1,a2,ed1,ed2,ed1+ed2
|
|---|
| 969 | // write(6,102)ed1_low,ed1_high,ed2_low,ed2_high
|
|---|
| 970 | e1 = e*a1/(a1+a2) + ed1;
|
|---|
| 971 | e2 = e - e*a1/(a1+a2) + ed2;
|
|---|
| 972 | atot = a1+a2;
|
|---|
| 973 | if (atot > a+1) {
|
|---|
| 974 | // write(6,*)'a,,a1,a2,atot',a,a1,a2,atot
|
|---|
| 975 | // write(6,*)'n,n1r,n2r',n,n1r,n2r
|
|---|
| 976 | // write(6,*)'z,z1,z2',z,z1,z2
|
|---|
| 977 | }
|
|---|
| 978 |
|
|---|
| 979 | milledeux:
|
|---|
| 980 | // only symmetric fission
|
|---|
| 981 | // Symmetric fission: Ok! Checked CS 10/10/05
|
|---|
| 982 | if ( (icz == -1) || (a1 < 0.0) || (a2 < 0.0) ) {
|
|---|
| 983 | // IF (z.eq.92) THEN
|
|---|
| 984 | // write(6,*)'symmetric fission'
|
|---|
| 985 | // write(6,*)'Z,A,E,A1,A2,icz,Atot',Z,A,E,A1,A2,icz,Atot
|
|---|
| 986 | // END IF
|
|---|
| 987 |
|
|---|
| 988 | if (itest == 1) {
|
|---|
| 989 | G4cout << "milledeux: liquid-drop option " << G4endl;
|
|---|
| 990 | }
|
|---|
| 991 |
|
|---|
| 992 | n = a-z;
|
|---|
| 993 | // proton number in symmetric fission (centre) *
|
|---|
| 994 | zsymm = z / 2.0;
|
|---|
| 995 | nsymm = n / 2.0;
|
|---|
| 996 | asymm = nsymm + zsymm;
|
|---|
| 997 |
|
|---|
| 998 | a_levdens = a / 8.0;
|
|---|
| 999 |
|
|---|
| 1000 | masscurv = 2.0;
|
|---|
| 1001 | cz_symm = 8.0 / std::pow(z,2) * masscurv;
|
|---|
| 1002 |
|
|---|
| 1003 | wzsymm = std::sqrt( (0.5 * std::sqrt(1.0/a_levdens*e) / cz_symm) ) ;
|
|---|
| 1004 |
|
|---|
| 1005 | if (itest == 1) {
|
|---|
| 1006 | G4cout << " symmetric high energy fission " << G4endl;
|
|---|
| 1007 | G4cout << "wzsymm " << wzsymm << G4endl;
|
|---|
| 1008 | }
|
|---|
| 1009 |
|
|---|
| 1010 | z1mean = zsymm;
|
|---|
| 1011 | z1width = wzsymm;
|
|---|
| 1012 |
|
|---|
| 1013 | // random decision: Z1 and Z2 at scission: */
|
|---|
| 1014 | z1 = 1.0;
|
|---|
| 1015 | z2 = 1.0;
|
|---|
| 1016 | while ( (z1 < 5.0) || (z2 < 5.0) ) {
|
|---|
| 1017 | // z1 = dble(gausshaz(kkk,sngl(z1mean),sngl(z1width)));
|
|---|
| 1018 | // z1 = rnd.gaus(z1mean,z1width);
|
|---|
| 1019 | // z1 = 24.8205585; //gausshaz(kkk, z1mean, z1width);
|
|---|
| 1020 | z1 = gausshaz(kkk, z1mean, z1width);
|
|---|
| 1021 | z2 = z - z1;
|
|---|
| 1022 | }
|
|---|
| 1023 |
|
|---|
| 1024 | if (itest == 1) {
|
|---|
| 1025 | G4cout << " z1 " << z1 << G4endl;
|
|---|
| 1026 | G4cout << " z2 " << z2 << G4endl;
|
|---|
| 1027 | }
|
|---|
| 1028 | if (itest == 1) {
|
|---|
| 1029 | G4cout << " zsymm " << zsymm << G4endl;
|
|---|
| 1030 | G4cout << " nsymm " << nsymm << G4endl;
|
|---|
| 1031 | G4cout << " asymm " << asymm << G4endl;
|
|---|
| 1032 | }
|
|---|
| 1033 |
|
|---|
| 1034 | cn = umass(zsymm, nsymm+1.0, 0.0) + umass(zsymm, nsymm-1.0, 0.0)
|
|---|
| 1035 | + 1.44 * std::pow(zsymm, 2)/
|
|---|
| 1036 | (std::pow(r_null, 2) * std::pow(std::pow(asymm+1.0, 1.0/3.0) + std::pow(asymm-1.0, 1.0/3.0), 2))
|
|---|
| 1037 | - 2.0 * umass(zsymm, nsymm, 0.0) - 1.44 * std::pow(zsymm, 2) /
|
|---|
| 1038 | std::pow(r_null * 2.0 *std::pow(asymm, 1.0/3.0), 2);
|
|---|
| 1039 | // This is an approximation! Coulomb energy is neglected.
|
|---|
| 1040 |
|
|---|
| 1041 | n1width = std::sqrt( (0.5 * std::sqrt(1.0/a_levdens*e) / cn) + 1.35);
|
|---|
| 1042 | if (itest == 1) {
|
|---|
| 1043 | G4cout << " cn " << cn << G4endl;
|
|---|
| 1044 | G4cout << " n1width " << n1width << G4endl;
|
|---|
| 1045 | }
|
|---|
| 1046 |
|
|---|
| 1047 | // /* average N of both fragments: */
|
|---|
| 1048 | n1ucd = z1 * n/z;
|
|---|
| 1049 | n2ucd = z2 * n/z;
|
|---|
| 1050 | re1 = umass(z1,n1ucd, 0.6) + umass(z2,n2ucd, 0.6) + ecoul(z1,n1ucd, 0.6,z2,n2ucd, 0.6,2.0);
|
|---|
| 1051 | re2 = umass(z1,n1ucd+1.,0.6) + umass(z2,n2ucd-1.,0.6) + ecoul(z1,n1ucd+1.,0.6,z2,n2ucd-1.,0.6,2.0);
|
|---|
| 1052 | re3 = umass(z1,n1ucd+2.,0.6) + umass(z2,n2ucd-2.,0.6) + ecoul(z1,n1ucd+2.,0.6,z2,n2ucd-2.,0.6,2.0);
|
|---|
| 1053 | reps2 = (re1-2.0*re2+re3) / 2.0;
|
|---|
| 1054 | reps1 = re2 - re1 - reps2;
|
|---|
| 1055 | rn1_pol = - reps1 / (2.0 * reps2);
|
|---|
| 1056 | n1mean = n1ucd + rn1_pol;
|
|---|
| 1057 |
|
|---|
| 1058 | // random decision: N1R and N2R at scission, before evaporation: */
|
|---|
| 1059 | // N1R = dfloat(NINT(GAUSSHAZ(KKK,sngl(N1mean),sngl(N1width))));
|
|---|
| 1060 | // n1r = (float)( (int)(rnd.gaus(n1mean,n1width)) );
|
|---|
| 1061 | // n1r = 34.0; //(float)( (int)(gausshaz(k, n1mean,n1width)) );
|
|---|
| 1062 | n1r = (float)( (int)(gausshaz(k, n1mean,n1width)) );
|
|---|
| 1063 | n2r = n - n1r;
|
|---|
| 1064 | // Mass of first and second fragment */
|
|---|
| 1065 | a1 = z1 + n1r;
|
|---|
| 1066 | a2 = z2 + n2r;
|
|---|
| 1067 |
|
|---|
| 1068 | e1 = e*a1/(a1+a2);
|
|---|
| 1069 | e2 = e - e*a1/(a1+a2);
|
|---|
| 1070 | }
|
|---|
| 1071 | v1 = 0.0; // These are not calculated in SimFis3.
|
|---|
| 1072 | v2 = 0.0;
|
|---|
| 1073 | if (itest == 1) {
|
|---|
| 1074 | G4cout << " n1r " << n1r << G4endl;
|
|---|
| 1075 | G4cout << " n2r " << n2r << G4endl;
|
|---|
| 1076 | }
|
|---|
| 1077 |
|
|---|
| 1078 | if (itest == 1) {
|
|---|
| 1079 | G4cout << " a1 " << a1 << G4endl;
|
|---|
| 1080 | G4cout << " z1 " << z1 << G4endl;
|
|---|
| 1081 | G4cout << " a2 " << a2 << G4endl;
|
|---|
| 1082 | G4cout << " z2 " << z2 << G4endl;
|
|---|
| 1083 | G4cout << " e1 " << e1 << G4endl;
|
|---|
| 1084 | G4cout << " e2 " << e << G4endl;
|
|---|
| 1085 | }
|
|---|
| 1086 | }
|
|---|
| 1087 |
|
|---|
| 1088 | void G4AblaFission::standardRandom(G4double *rndm, G4long *seed)
|
|---|
| 1089 | {
|
|---|
| 1090 | (*seed) = (*seed); // Avoid warning during compilation.
|
|---|
| 1091 | // Use Geant4 G4UniformRand
|
|---|
| 1092 | (*rndm) = randomGenerator->getRandom();
|
|---|
| 1093 | }
|
|---|
| 1094 |
|
|---|
| 1095 | G4double G4AblaFission::haz(G4int k)
|
|---|
| 1096 | {
|
|---|
| 1097 | const G4int pSize = 110;
|
|---|
| 1098 | static G4double p[pSize];
|
|---|
| 1099 | static G4long ix = 0, i = 0;
|
|---|
| 1100 | static G4double x = 0.0, y = 0.0, a = 0.0, haz = 0.0;
|
|---|
| 1101 | // k =< -1 on initialise
|
|---|
| 1102 | // k = -1 c'est reproductible
|
|---|
| 1103 | // k < -1 || k > -1 ce n'est pas reproductible
|
|---|
| 1104 |
|
|---|
| 1105 | // Zero is invalid random seed. Set proper value from our random seed collection:
|
|---|
| 1106 | if(ix == 0) {
|
|---|
| 1107 | ix = hazard->ial;
|
|---|
| 1108 | }
|
|---|
| 1109 |
|
|---|
| 1110 | if (k <= -1) { //then
|
|---|
| 1111 | if(k == -1) { //then
|
|---|
| 1112 | ix = 0;
|
|---|
| 1113 | }
|
|---|
| 1114 | else {
|
|---|
| 1115 | x = 0.0;
|
|---|
| 1116 | y = secnds(int(x));
|
|---|
| 1117 | ix = int(y * 100 + 43543000);
|
|---|
| 1118 | if(mod(ix,2) == 0) {
|
|---|
| 1119 | ix = ix + 1;
|
|---|
| 1120 | }
|
|---|
| 1121 | }
|
|---|
| 1122 |
|
|---|
| 1123 | // Here we are using random number generator copied from INCL code
|
|---|
| 1124 | // instead of the CERNLIB one! This causes difficulties for
|
|---|
| 1125 | // automatic testing since the random number generators, and thus
|
|---|
| 1126 | // the behavior of the routines in C++ and FORTRAN versions is no
|
|---|
| 1127 | // longer exactly the same!
|
|---|
| 1128 | x = randomGenerator->getRandom();
|
|---|
| 1129 | // standardRandom(&x, &ix);
|
|---|
| 1130 | for(G4int i = 0; i < pSize; i++) { //do i=1,110
|
|---|
| 1131 | p[i] = randomGenerator->getRandom();
|
|---|
| 1132 | // standardRandom(&(p[i]), &ix);
|
|---|
| 1133 | }
|
|---|
| 1134 | a = randomGenerator->getRandom();
|
|---|
| 1135 | //standardRandom(&a, &ix);
|
|---|
| 1136 | k = 0;
|
|---|
| 1137 | }
|
|---|
| 1138 |
|
|---|
| 1139 | i = nint(100*a)+1;
|
|---|
| 1140 | haz = p[i];
|
|---|
| 1141 | a = randomGenerator->getRandom();
|
|---|
| 1142 | // standardRandom(&a, &ix);
|
|---|
| 1143 | p[i] = a;
|
|---|
| 1144 |
|
|---|
| 1145 | hazard->ial = ix;
|
|---|
| 1146 | // haz=0.4;
|
|---|
| 1147 | return haz;
|
|---|
| 1148 | }
|
|---|
| 1149 |
|
|---|
| 1150 | G4double G4AblaFission::gausshaz(int k, double xmoy, double sig)
|
|---|
| 1151 | {
|
|---|
| 1152 | // Gaussian random numbers:
|
|---|
| 1153 |
|
|---|
| 1154 | // 1005 C*** TIRAGE ALEATOIRE DANS UNE GAUSSIENNE DE LARGEUR SIG ET MOYENNE XMOY
|
|---|
| 1155 | static G4int iset = 0;
|
|---|
| 1156 | static G4double v1,v2,r,fac,gset,gausshaz;
|
|---|
| 1157 |
|
|---|
| 1158 | if(iset == 0) { //then
|
|---|
| 1159 | do {
|
|---|
| 1160 | v1 = 2.0*haz(k) - 1.0;
|
|---|
| 1161 | v2 = 2.0*haz(k) - 1.0;
|
|---|
| 1162 | r = std::pow(v1,2) + std::pow(v2,2);
|
|---|
| 1163 | } while(r >= 1);
|
|---|
| 1164 |
|
|---|
| 1165 | fac = std::sqrt(-2.*std::log(r)/r);
|
|---|
| 1166 | gset = v1*fac;
|
|---|
| 1167 | gausshaz = v2*fac*sig+xmoy;
|
|---|
| 1168 | iset = 1;
|
|---|
| 1169 | }
|
|---|
| 1170 | else {
|
|---|
| 1171 | gausshaz=gset*sig+xmoy;
|
|---|
| 1172 | iset=0;
|
|---|
| 1173 | }
|
|---|
| 1174 | return gausshaz;
|
|---|
| 1175 | }
|
|---|
| 1176 |
|
|---|
| 1177 | // Utilities
|
|---|
| 1178 |
|
|---|
| 1179 | G4double G4AblaFission::min(G4double a, G4double b)
|
|---|
| 1180 | {
|
|---|
| 1181 | if(a < b) {
|
|---|
| 1182 | return a;
|
|---|
| 1183 | }
|
|---|
| 1184 | else {
|
|---|
| 1185 | return b;
|
|---|
| 1186 | }
|
|---|
| 1187 | }
|
|---|
| 1188 |
|
|---|
| 1189 | G4int G4AblaFission::min(G4int a, G4int b)
|
|---|
| 1190 | {
|
|---|
| 1191 | if(a < b) {
|
|---|
| 1192 | return a;
|
|---|
| 1193 | }
|
|---|
| 1194 | else {
|
|---|
| 1195 | return b;
|
|---|
| 1196 | }
|
|---|
| 1197 | }
|
|---|
| 1198 |
|
|---|
| 1199 | G4double G4AblaFission::max(G4double a, G4double b)
|
|---|
| 1200 | {
|
|---|
| 1201 | if(a > b) {
|
|---|
| 1202 | return a;
|
|---|
| 1203 | }
|
|---|
| 1204 | else {
|
|---|
| 1205 | return b;
|
|---|
| 1206 | }
|
|---|
| 1207 | }
|
|---|
| 1208 |
|
|---|
| 1209 | G4int G4AblaFission::max(G4int a, G4int b)
|
|---|
| 1210 | {
|
|---|
| 1211 | if(a > b) {
|
|---|
| 1212 | return a;
|
|---|
| 1213 | }
|
|---|
| 1214 | else {
|
|---|
| 1215 | return b;
|
|---|
| 1216 | }
|
|---|
| 1217 | }
|
|---|
| 1218 |
|
|---|
| 1219 | G4int G4AblaFission::nint(G4double number)
|
|---|
| 1220 | {
|
|---|
| 1221 | G4double intpart = 0.0;
|
|---|
| 1222 | G4double fractpart = 0.0;
|
|---|
| 1223 | fractpart = std::modf(number, &intpart);
|
|---|
| 1224 | if(number == 0) {
|
|---|
| 1225 | return 0;
|
|---|
| 1226 | }
|
|---|
| 1227 | if(number > 0) {
|
|---|
| 1228 | if(fractpart < 0.5) {
|
|---|
| 1229 | return int(std::floor(number));
|
|---|
| 1230 | }
|
|---|
| 1231 | else {
|
|---|
| 1232 | return int(std::ceil(number));
|
|---|
| 1233 | }
|
|---|
| 1234 | }
|
|---|
| 1235 | if(number < 0) {
|
|---|
| 1236 | if(fractpart < -0.5) {
|
|---|
| 1237 | return int(std::floor(number));
|
|---|
| 1238 | }
|
|---|
| 1239 | else {
|
|---|
| 1240 | return int(std::ceil(number));
|
|---|
| 1241 | }
|
|---|
| 1242 | }
|
|---|
| 1243 |
|
|---|
| 1244 | return int(std::floor(number));
|
|---|
| 1245 | }
|
|---|
| 1246 |
|
|---|
| 1247 | G4int G4AblaFission::secnds(G4int x)
|
|---|
| 1248 | {
|
|---|
| 1249 | time_t mytime;
|
|---|
| 1250 | tm *mylocaltime;
|
|---|
| 1251 |
|
|---|
| 1252 | time(&mytime);
|
|---|
| 1253 | mylocaltime = localtime(&mytime);
|
|---|
| 1254 |
|
|---|
| 1255 | if(x == 0) {
|
|---|
| 1256 | return(mylocaltime->tm_hour*60*60 + mylocaltime->tm_min*60 + mylocaltime->tm_sec);
|
|---|
| 1257 | }
|
|---|
| 1258 | else {
|
|---|
| 1259 | return(mytime - x);
|
|---|
| 1260 | }
|
|---|
| 1261 | }
|
|---|
| 1262 |
|
|---|
| 1263 | G4int G4AblaFission::mod(G4int a, G4int b)
|
|---|
| 1264 | {
|
|---|
| 1265 | if(b != 0) {
|
|---|
| 1266 | return (a - (a/b)*b);
|
|---|
| 1267 | }
|
|---|
| 1268 | else {
|
|---|
| 1269 | return 0;
|
|---|
| 1270 | }
|
|---|
| 1271 | }
|
|---|
| 1272 |
|
|---|
| 1273 | G4double G4AblaFission::dmod(G4double a, G4double b)
|
|---|
| 1274 | {
|
|---|
| 1275 | if(b != 0) {
|
|---|
| 1276 | return (a - (a/b)*b);
|
|---|
| 1277 | }
|
|---|
| 1278 | else {
|
|---|
| 1279 | return 0.0;
|
|---|
| 1280 | }
|
|---|
| 1281 | }
|
|---|
| 1282 |
|
|---|
| 1283 | G4double G4AblaFission::dint(G4double a)
|
|---|
| 1284 | {
|
|---|
| 1285 | G4double value = 0.0;
|
|---|
| 1286 |
|
|---|
| 1287 | if(a < 0.0) {
|
|---|
| 1288 | value = double(std::ceil(a));
|
|---|
| 1289 | }
|
|---|
| 1290 | else {
|
|---|
| 1291 | value = double(std::floor(a));
|
|---|
| 1292 | }
|
|---|
| 1293 |
|
|---|
| 1294 | return value;
|
|---|
| 1295 | }
|
|---|
| 1296 |
|
|---|
| 1297 | G4int G4AblaFission::idint(G4double a)
|
|---|
| 1298 | {
|
|---|
| 1299 | G4int value = 0;
|
|---|
| 1300 |
|
|---|
| 1301 | if(a < 0) {
|
|---|
| 1302 | value = int(std::ceil(a));
|
|---|
| 1303 | }
|
|---|
| 1304 | else {
|
|---|
| 1305 | value = int(std::floor(a));
|
|---|
| 1306 | }
|
|---|
| 1307 |
|
|---|
| 1308 | return value;
|
|---|
| 1309 | }
|
|---|
| 1310 |
|
|---|
| 1311 | G4int G4AblaFission::idnint(G4double value)
|
|---|
| 1312 | {
|
|---|
| 1313 | G4double valueCeil = int(std::ceil(value));
|
|---|
| 1314 | G4double valueFloor = int(std::floor(value));
|
|---|
| 1315 |
|
|---|
| 1316 | if(std::fabs(value - valueCeil) < std::fabs(value - valueFloor)) {
|
|---|
| 1317 | return int(valueCeil);
|
|---|
| 1318 | }
|
|---|
| 1319 | else {
|
|---|
| 1320 | return int(valueFloor);
|
|---|
| 1321 | }
|
|---|
| 1322 | }
|
|---|
| 1323 |
|
|---|
| 1324 | G4double G4AblaFission::dmin1(G4double a, G4double b, G4double c)
|
|---|
| 1325 | {
|
|---|
| 1326 | if(a < b && a < c) {
|
|---|
| 1327 | return a;
|
|---|
| 1328 | }
|
|---|
| 1329 | if(b < a && b < c) {
|
|---|
| 1330 | return b;
|
|---|
| 1331 | }
|
|---|
| 1332 | if(c < a && c < b) {
|
|---|
| 1333 | return c;
|
|---|
| 1334 | }
|
|---|
| 1335 | return a;
|
|---|
| 1336 | }
|
|---|
| 1337 |
|
|---|
| 1338 | G4double G4AblaFission::utilabs(G4double a)
|
|---|
| 1339 | {
|
|---|
| 1340 | if(a > 0) {
|
|---|
| 1341 | return a;
|
|---|
| 1342 | }
|
|---|
| 1343 | if(a < 0) {
|
|---|
| 1344 | return (-1*a);
|
|---|
| 1345 | }
|
|---|
| 1346 | if(a == 0) {
|
|---|
| 1347 | return a;
|
|---|
| 1348 | }
|
|---|
| 1349 |
|
|---|
| 1350 | return a;
|
|---|
| 1351 | }
|
|---|
| 1352 |
|
|---|
| 1353 | void G4AblaFission::p(G4int a, G4int b) {
|
|---|
| 1354 | G4cout << a << std::setw(8) << b << G4endl;
|
|---|
| 1355 | }
|
|---|
| 1356 |
|
|---|
| 1357 | void G4AblaFission::p(G4double a, G4double b) {
|
|---|
| 1358 | G4cout << " " << a << std::setw(12) << b << G4endl;
|
|---|
| 1359 | }
|
|---|
| 1360 |
|
|---|
| 1361 | void G4AblaFission::p(G4String msg, G4double a, G4double b) {
|
|---|
| 1362 | G4cout << " " << msg << " " << a << std::setw(12) << b << G4endl;
|
|---|
| 1363 | }
|
|---|